
Quantifying Memory Underutilization in HPC Systems and
Using it to Improve Performance via Architecture Support

Gagandeep Panwar∗
Virginia Tech

Blacksburg, USA
gpanwar@vt.edu

Da Zhang∗
Virginia Tech

Blacksburg, USA
daz3@vt.edu

Yihan Pang∗
Virginia Tech

Blacksburg, USA
pyihan1@vt.edu

Mai Dahshan
Virginia Tech

Blacksburg, USA
mdahshan@vt.edu

Nathan DeBardeleben
Los Alamos National Laboratory

Los Alamos, USA
ndebard@lanl.gov

Binoy Ravindran
Virginia Tech

Blacksburg, USA
binoy@vt.edu

Xun Jian
Virginia Tech

Blacksburg, USA
xunj@vt.edu

ABSTRACT
A system’s memory size is often dictated by worst-case workloads
with highest memory requirements; this causes memory to be un-
derutilized in the common case when the system is not running its
worst-case workloads. Cognizant of this memory underutilization
problem, many prior works have studied memory utilization and
explored how to improve it in the context of cloud.

In this paper, we perform the first large-scale study of system-
level memory utilization in the context of HPC systems; through
seven million machine-hours of measurements across four HPC
systems, we find memory underutilization in HPC systems is much
more severe than in cloud. Subsequently, we also perform the first
exploration of architectural techniques to improve memory uti-
lization specifically for HPC systems. We propose exposing each
compute node’s currently unused memory to its CPU(s) via novel
architectural support for OS. This can enable many new microar-
chitecture techniques that use the abundant free memory to boost
microarchitecture performance transparently without requiring
any user code modification or recompilation; we refer to them
as Free-memory-aware Microarchitecture Techniques (FMTs). We
then present a detailed example of an FMT – Free-memory-aware
Memory Replication (FMR). On average across five HPC bench-
mark suites, FMR provides 13% performance and 8% system-level
energy improvement compared to a highly optimized baseline rep-
resentative of modern memory systems. To check the performance

∗The first three authors are first co-authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO-52, October 12–16, 2019, Columbus, OH, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6938-1/19/10. . . $15.00
https://doi.org/10.1145/3352460.3358267

benefits our simulation reports, we emulated FMR in a real sys-
tem and found close corroboration between simulation results and
real-system emulation results. The paper ends by discussing other
possible FMTs and applicability to other types of systems.

CCS CONCEPTS
• Hardware Dynamic memory; • Computer systems
organization Grid computing ; • Software and its engi-
neering Main memory.

KEYWORDS
Memory Architecture, Memory Management, HPC Systems, Oper-
ating Systems, DRAM, Supercomputing

ACM Reference Format:
Gagandeep Panwar, Da Zhang, Yihan Pang, Mai Dahshan, Nathan De-
Bardeleben, Binoy Ravindran, and Xun Jian. 2019. Quantifying Memory Un-
derutilization in HPC Systems and Using it to Improve Performance via Ar-
chitecture Support. In The 52nd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO-52), October 12–16, 2019, Columbus, OH, USA.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3352460.3358267

1 INTRODUCTION
A system’s physical memory size is often determined by the worst-
case memory usage scenario with the highest memory requirement.
However, memory usage varies by workload; much of the memory
in a system is often not in use when running common-case work-
loads that use less memory. Many prior works [20, 24, 42, 55, 73]
have quantified the memory underutilization problem in the con-
text of cloud. Correspondingly, many prior works have explored
techniques to mitigate memory underutilization in cloud; they pro-
pose intelligent ways to colocate heterogeneous workloads (e.g.,
memory-hungry database workloads and compute-intensive work-
loads) on the same machine to improve memory utilization. Ex-
amples include colocating both the memory and computations of
different workloads on the same machine (e.g., Quasar [23], Elas-
ticMem [76], VMMemory Overcommit [8]) and colocating different

https://doi.org/10.1145/3352460.3358267
https://doi.org/10.1145/3352460.3358267

MICRO-52, October 12–16, 2019, Columbus, OH, USA Panwar and Zhang and Pang, et al.

workloads’ program memory, but not computation (e.g., Disaggre-
gated Memory [27, 52, 53], Infiniswap [34]).

In this paper, we perform the first large-scale study of HPC
systems’ system-level memory usage (i.e., each compute node’s
total physical memory usage, encompassing everything from mem-
ory used by the OS, by disk buffering/file caching, and user jobs
themselves, etc). Our study spans four months of operation in four
in-production HPC systems in Los Alamos National Laboratory and
Virginia Tech, totaling seven million machine-hours of observation
and ∼three billion memory usage measurements. We find that the
average system-level memory usage in active nodes running user
jobs is only 24%; as such, memory utilization in HPC systems is
much lower than in cloud, which is > 50% according to prior studies
[20, 24, 42, 55, 73].

Memory utilization enhancement techniques that are effective
for cloud, such as OS-directed file caching andworkload co-location,
are ineffective forHPC systems. HPCworkloads are typically compute-
intensive rather than storage-intensive (e.g., like database work-
loads); this minimizes the effectiveness of file caching. HPC work-
loads are also highly parallel; as a single workload often already has
sufficient threads/processes to take up all cores in a compute node,
workload colocation is unsuitable for HPC systems. In fact, many
HPC systems (e.g., in all US national laboratories) deliberately dis-
allow colocation of independent workloads on the same compute
nodes to minimize the negative impact of increased thread/process-
level performance variation on parallel workloads caused by the
resultant inter-workload interference.

In this paper, we perform the first exploration of architectural
techniques to improve memory utilization for HPC systems. We
propose exposing each compute node’s currently unused memory
to its CPU(s) via novel architectural support for the operating sys-
tem in a user-transparent manner (i.e., user code does not need
to be modified or recompiled). When made free-memory aware,
hardware can leverage HPC systems’ abundant free memory in
the common to record arbitrary data to boost microarchitecture
performance. We present a detailed free-memory-aware microar-
chitecture technique – Free-memory-aware Memory Replication
(FMR); FMR effectively hides many state-dependent memory laten-
cies by using free memory locations to replicate logical memory
blocks to allow CPU to fetch from the memory location with the
faster state at the time of LLC miss. FMR can be readily deployed on
commodity memory systems with commodity memory chips and
commodity memory modules. We end the paper with discussing
other use cases and applicability to other types of systems.

We make the following contributions in this paper:

• We perform the first large-scale study of system-level mem-
ory utilization for HPC systems. We find HPC systems suffer
from more severe memory underutilization than cloud.

• We are first to explore architectural techniques to address
memory underutilization in HPC systems. We propose ex-
posing each compute node’s OS-visible free memory to the
node’s CPU(s) to improve performance.

• We are first to propose the general concept of Free-memory-
aware Microarchitecture Techniques (FMTs), which oppor-
tunistically records arbitrary data in free memory locations
to boost microarchitecture performance.

• We present a detailed FMT – Free-memory-aware Memory
Replication - that improves performance by 13% and system-
level energy efficiency by 8%, on average across five HPC
benchmark suites.

• To check the performance benefits our simulation reports, we
emulated FMR in a real system and found close corroboration
between simulation and real-system emulation results.

2 QUANTIFYING MEMORY UNDER-
UTILIZATION IN HPC SYSTEMS

While many prior works [24, 50, 80] have studied HPC workload
characteristics, they have only studied program-level memory us-
age. Our study quantifies system-level memory usage, which in-
cludes all memory usages (e.g., memory used by OS, by disk buffer-
ing/file caching, by user jobs themselves, etc.).

We studied for four months the memory utilization of four HPC
systems – Grizzly, Badger, Snow at Los Alamos National Laboratory
(LANL) and Cascade at Virginia Tech. Table 1 describes the studied
HPC systems. We have made the raw measurement data for LANL
systems publicly available at https://usrc.lanl.gov/data/LA-UR-19-
28211.php. The biggest HPC system we studied – Grizzly - is a mid-
range Top500 supercomputer [2]. All systems deploy the widely-
used SLURM job scheduler. We collect every node’s memory usage
once every ten seconds by using the LDMS [5] monitoring tool.
LDMS’ "Meminfo/MemFree" output reports how much memory in
the node is currently completely not in use (e.g., not by the user
job, not by the OS, disk buffering/file caching, not by anything); we
refer to such idle memory as free memory. Each compute node’s
system-level memory usage is calculated as the node’s physical
memory size minus its free memory.

Figure 1 shows the breakdown of how often active nodes use a
given maximum amount of memory across one hour time intervals;
for example, it shows that in Grizzly, the maximum memory usage
of a node when active is less than 32GB in 79% of all one-hour
intervals over the four-month study. We refer to a node running

Table 1: Description of the studied systems. "System utiliza-
tion" is the fraction of time a system’s compute node is run-
ning user job(s), on average across all nodes in the system.

Cluster Name Total Compute Computing hardware Memory per System Age
Nodes per Node Node Utilization

Grizzly 1490 2x 18-core E5 128GB 78% 2 Years
Badger 660 2x 18-core E5 128GB 75% 1 Year
Snow 368 2x 18-core E5 128GB 83% 2 Years

Cascade 190 2x 18-core E5 128GB 71% 3 Years

0%

20%

40%

60%

80%

100%

System A (~1600 nodes) System B (~700 nodes) System C (~400 nodes) System D (~200 nodes)

Fr
ac

tio
n

of
 ti

m
e

0-32GB 32-64GB 64-77GB 77-90GB 90-103GB 103-128GB

Grizzly (1490 nodes) Badger (660 nodes) Snow (368 nodes) Cascade (190 nodes)

Figure 1: Distribution of active nodes’ hourlymemory usage.
A node’s hourlymemory usage is itsmaximumusage during
the hour. 79% of hourly memory usages in active nodes in
Grizzly are <= 32GB. All studied system have 128GB/node.

https://usrc.lanl.gov/data/LA-UR-19-28211.php
https://usrc.lanl.gov/data/LA-UR-19-28211.php

Quantifying Memory Underutilization in HPC Systems and Using it to Improve Performance via Architecture Support MICRO-52, October 12–16, 2019, Columbus, OH, USA

user job(s) as an active node; as such, Figure 1 filters out for each
node all one-hour intervals in which the node did not run any
job(s). The average node-level memory utilization of active nodes
are 18%, 17%, 34%, and 26% for Grizzly, Badger, Snow, and Cascade
respectively. Active nodes use on average < 50% of their memory
for 88% of the time when equally weighing the studied systems.

Figure 2 shows every node’s memory utilization; it shows for
each node its maximum memory utilization observed during the
study, the 90th percentile memory utilization (i.e., the node’s mem-
ory utilization in a one-hour interval that is greater than the mem-
ory utilization of 90% of the node’s one-hour intervals), and the
80th percentile memory utilization. Figure 2 also only considers
active intervals in which a node has user job(s). Figure 2 shows
there is a large gap between a node’s maximum/worst-case mem-
ory utilization and common-case memory utilization (e.g., memory
utilization for 90% or 80% of the time).

As Figures 1 and 2 report system-level memory usage, they ac-
count for all memory used by existing OS-level optimization. One
important OS optimization is to opportunistically use free memory
to transparently cache accessed files. The OS community has called
this optimization by different names, such as disk buffering, caching,
etc.; we call it the OS file cache to clearly distinguish it from CPU
caches. One interesting question is why the OS file cache does not
often expand to occupy all free memory over time, given that it can
accumulate file pages accessed by all past jobs ran on the node. This
question is particularly intriguing given that all studied systems
are heavily utilized (see Table 1) and none of the studied systems
enforce any size cap for the OS file cache as we have empirically
verified through our measurements.

In HPC systems, a node’s OS file cache typically grows slowly for
two reasons. First, unlike data center workloads, which are storage-
intensive (i.e., spend short time on computation after accessing
the file system), HPC workloads tend to be compute-intensive (i.e.,
compute for a long time after reading input file(s)). Second, inputs
to a node participating in a distributed job often come directly from
a master process (e.g., an MPI master process) through message
passing, not through the file system and, therefore, are often not
inserted into many participating nodes’ OS file caches. A major
exception to the above is writing checkpoint files to provide fault
tolerance. However, under network-based file systems (e.g., NFS,

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

System A System B System C Sys D

Ea
ch

 n
od

e’
s m

em
or

y
us

ag
e

no
rm

al
ize

d
to

 it
s m

em
or

y
sy

st
em

 si
ze

80th percentile 90th percentile Max Memory Usage

All 1490 nodes of Grizzly
All 660 nodes

of Badger
Snow’s
nodes

Cas-
cade

Figure 2: The maximum, 90th percentile, and 80th percentile
memory utilization of every node when active. Each vertical
slice of three points belong to a distinct node. Nodes within
each system are sorted by their 80th percentile utilization.

HPFS, Lustre), which are commonly used by HPC systems, writing
to files can cause evictions from client-side caches to help preserve
cache coherence [72].

In HPC systems, a node’s OS file cache often shrinks for multiple
reasons. After a job ends, its input files are often compressed/archived
and then deleted to preserve precious storage space on storage
servers; deleting a file evicts its content from OS file cache. When
running jobs that allocate a large amount of memory, OS also evicts
cached file pages to make room for program memory; OS does
not refetch evicted file pages when program ends to avoid costly
storage and network access overheads. Even if OS were to refetch
evicted file pages, it would only benefit accesses to few shared files,
such as executables, but not individual users’ files, because which
nodes are available the next time the same user submits a job are
often different in busy HPC systems.

In short, the slow growth rate of OS file cache coupled with the
many factors shrinking OS file cache keeps it small in HPC systems.

A potential simple solution to address memory underutilization
is to turn off unused memory. Off memory is still under utilized,
however. Turning off memory can also reduce system performance
by reducing memory rank-level and bank-level parallelism. Further-
more, memory voltage and, thus, power has also been steadily de-
clining [39–41]; this has reduced memory’s contribution to system
power from ∼30% in 2009 [9] down to ∼18% in 2018 [10]. Another
potential simple solution is to reduce memory system size. However,
this reduces the maximum solvable problem size and, therefore,
reduces the HPC system’s capability, which is an important metric
of merit for HPC systems.

Prior techniques that colocate heterogeneous workloads on the
same node to improve memory utilization in cloud [8, 23, 34, 52, 76]
are inadequate for HPC systems. Individual HPC workloads are
highly parallel and, therefore, often occupy all cores in a node; de-
liberately spreading the threads/processes of individual workloads
across more nodes than necessary to colocate different workloads’
threads/processes on the same nodes increases network communi-
cation overheads and, therefore, reduces parallel performance. Also
because they tend to be more parallel than cloud workloads, HPC
workloads are more sensitive to performance variation; slowing
down a single thread can significantly slow down the total execu-
tion time of parallel programs. By making multiple workloads share
the same node’s network access, CPU power budget, etc, workload
colocation can cause substantial performance variability; to provide
performance isolation, many HPC systems (e.g., in all US national
laboratories) deliberately disallow workload colocation.

3 ARCHITECTURAL SUPPORT FOR OS TO
EXPOSE FREE MEMORY TO CPU

Ideally, OS should be able to utilize HPC systems’ abundant un-
used memory to effectively boost performance, just as OS can do
so for data center (e.g., database) workloads via the OS file cache.
To this end, we propose a novel architectural support for OS to
expose a node’s OS-visible free memory to its CPU(s) to enable
Free-memory-aware Microarchitecture Techniques (FMTs), a new
class of microarchitecture techniques that opportunistically record
arbitrary data in free memory to boost microarchitecture perfor-
mance.We observe through the Advanced Configuration and Power

MICRO-52, October 12–16, 2019, Columbus, OH, USA Panwar and Zhang and Pang, et al.

Interface (ACPI), OS in existing systems can already inform CPU
of the underutilization of various hardware resources so that CPU
can opportunistically boost microarchitecture performance. For ex-
ample, OS can instruct CPU to power down cores/caches via ACPI;
conceptually, this tells CPU which cores/caches are not in use and
allows CPU to exploit this knowledge to opportunistically boost
microarchitecture performance (e.g., to turbo-boost the frequency
of the still in-use cores). Based on the above observation, we pro-
pose piggybacking on ACPI to enable OS to inform hardware which
physical memory locations are currently not used by software.

Figure 3 provides an overview of how OS uses the proposed
architectural support. OSmaintains a variable-sized continuous free
memory address range within its free list. OS communicates this
large continuous free memory range to hardware by piggybacking
on the existing OS-controlled ACPI interface. CPU then leverages
the OS-exposed free memory to record arbitrary data “for free" to
help boost microarchitecture performance.

The rest of this section describes the new architectural support
and how OS uses it. Section 4 describes a detailed FMT it enables.

3.1 Architectural Support
ACPI defines for each processor several hardware registers for OS
to write/set the processor’s power states [4]. Similarly, we propose
adding to each processor a hardware memory control register for
OS to record a free continuous memory address range within the
processor’s physical memory address range. This register records
the upper and lower addresses of the free continuous physical mem-
ory range. FMTs will be allowed to autonomously write arbitrary
data in arbitrary locations within the free continuous physical mem-
ory range recorded in the register. We refer to this register as the
CPU-visible Free Memory Register (CVFMR) register and refer to
the physical memory region it records as the CPU-visible free page.
OS can expand or shrink the CPU-visible free page by updating
CVFMR via ACPI at runtime. A node’s CPU-visible free page can
expand up to 100s to 1000s of gigabytes (e.g., up to almost the entire
memory system) when software-level memory usage is low.

To expand the CPU-visible free page, OS calls ACPI to write a
smaller lower address and/or a greater upper address into CVFMR.
This ACPI call can complete quickly because it simply sets the value
of CVFMR. Writing to hardware ACPI registers is fast as they are
used to manage CPU power modes, which can be updated within
tens of microseconds [56]. Afterwards, CPU asynchronously initial-
izes the pages added to the CPU-visible free page without interrupt-
ing any running programs by using spare bandwidth; initialization
values depend on the FMT(s) in use. By initializing linearly, CPU
can track the yet-uninitialized region via one register; this allows
FMTs to continue to access initialized free memory in parallel. We
note last-level cache (LLC) may evict dirty blocks with physical
addresses that fall within the CPU-visible free page because a pro-
gram can write to a page soon before freeing the page. To handle
write requests LLC sends to MC for such dirty evictions, MC simply
drops all write requests to addresses within CVFMR as free physical
pages only store dead/freed virtual memory objects.

To shrink the CPU-visible free page (e.g., to allocate some of its
physical memory to a requesting process), OS calls ACPI to write a
greater lower address and/or a smaller upper address into CVFMR.

CPU-Visible Free Page

CPU

Free-memory-aware
microarchitectures

CPU-visible Free Memory
(CVFM) Register

Opportunistically write
performance-boosting data

Piggyback on ACPI

Regular 4KB
Free Pages

Free List
OS

Figure 3: Overview of the proposed architectural support for
OS to expose free memory to hardware.

This ACPI call can also complete quickly because it again simply
sets the value of CVFMR. Afterwards, FMTs cease writing data to
physical addresses outside of the updated address range in CVFMR.
The contents of pages taken away from the CPU-visible free page do
not need to be preserved because these pages hold opportunistically
recorded data that did not exist in the first place without the CPU-
visible free page. OS zeros out these physical pages before allocating
them to programs, just as existing OS also zeros out physical pages
before allocating them to enforce inter-process memory protection.

3.2 How OS Uses the Architectural Support
OS tracks the CPU-visible free page in its free list (see Figure 3).
At runtime, OS expands the CPU-visible free page periodically;
periodic expansion enables all nodes in an HPC system to expand
their CPU-visible free pages at the same time to minimize OS jitter,
which is a concern for HPC systems. We propose expanding the
CPU-visible free page once an hour. At the end of each hour, OS
first compacts1 all free physical pages outside of the CPU-visible
free page to one or both of its ends and then calls ACPI to expand
the page by writing the widened continuous free memory range to
CVFMR. For our measured systems with 128GB/node, expanding
the CPU-visible free page once an hour also limits the maximum
amount of data migrated per node per hour to only 128GB.2 We
pessimistically estimate compacting 128GB of free memory in an
hour takes 128GB/(14GB/s) = 9 seconds, where 14GB/s is the
worse-case memory compaction throughput we observed via real-
system experiments (see detail in Section 6.3)); this translates to a
worst-case overhead of 9s/1hr = 0.3%. Common-case overheads
are much lower (see evaluation in Section 6.3).

OS may shrink the CPU-visible free page for memory allocation
requests. OS first uses other free pages in the free list to satisfy
memory allocation requests. When the free list runs out of other
free pages, OS decreases the size of the CPU-visible free page to
use physical memory taken away from the CPU-visible free page to
satisfy the memory allocation request. OS shrinks the CPU-visible
free page by calling ACPI to write a smaller address range into
CVFMR. OS takes away pages from the edges of the CPU-visible
free page to maintain its contiguity. We note that after OS runs
out of regular free pages in the free list, calling ACPI to shrink the
CPU-visible free page for every page allocation is expensive. OS
can effectively handle this overhead by reducing the size of the
1Memory compaction [21] is an existing OS feature to create huge (e.g., 2MB or 1GB)
memory pages to improve TLB hit rate.
2Each program page is migrated once (e.g., shifted/dropped down once to compact it
into lower physical addresses) regardless of whether it is a regular page or huge page;
as such, the maximum data movement is 128GB.

Quantifying Memory Underutilization in HPC Systems and Using it to Improve Performance via Architecture Support MICRO-52, October 12–16, 2019, Columbus, OH, USA

CPU-visible free page by 256MB at a time and, therefore, call ACPI
only once per 256MB/4KB = 65536 page allocations. OS tracks the
deducted 256MB as regular pages in the free list to quickly satisfy
future allocation requests.

3.3 Discussion
For a node with multiple CPU sockets, the node’s OS maintains a
CPU-visible free page for each CPU. Each CPU is typically assigned
its own contiguous physical memory address range [68]; the address
range of a CPU’s CPU-visible free page falls within the CPU’s
physical memory address range.

Another challenge with migrating pages to create a large contin-
uous CPU-visible free page is that some virtual pages in the kernel
are unmovable after boot up. Today’s systems often map these
pages to the lower physical addresses (e.g., within the first 4GB)
[43]. Some X86 systems also reserve a physical address range below
4GB for memory-mapped I/O (MMIO) for backward compatibility
with legacy 32-bit systems. To address this issue, OS may set each
CPU’s CPU-visible free page’s upper address at a very high physical
address (e.g., the CPU’s maximum physical address) and grow the
CPU-visible free page downward by decreasing its lower address.

4 FREE-MEMORY-AWARE
MICROARCHITECTURE

Due to the fundamental tradeoff between computation time and
space, exposing free memory to hardware can enable many new
microarchitecture techniques to boost performance. This section
describes in detail one such new microarchitecture – Free-memory-
aware Memory Replication (FMR). We observe DRAM access la-
tency is heavily dependent on the state of the DRAM location at
the time of LLC miss. For example, an LLC miss only incurs DRAM
refresh latency if the memory location storing the requested block
is currently under refresh. Using free memory locations to replicate
the same memory bock across two different DRAM locations can
hide state-dependent latencies by allowing CPU to read from the
location with the faster state at the time of LLCmiss. The rest of this
section is organized as follows. Section 4.1 provides the background
on the different state-dependent latencies in DRAM. Section 4.2
describes how to hide state-dependent latencies for read requests.
Section 4.3 describes how to efficiently write to memory under FMR.
Section 4.4 describes memory layout details.

4.1 Background: State-dependent Latencies
Refresh Latency (tRFC).DRAM requires periodic refresh because
the charge stored in DRAM cells leaks over time. DDRx memory
chips, which are used in HPC systems, are refreshed on a per-rank
basis; a rank is a group of memory chips that are always accessed
in lockstep. A rank cannot be accessed when it is refreshing.

Bus Turnaround Delay (tWTR/tRTW). After writing to a
rank, CPU must reconfigure the rank’s I/O circuitry back to read
mode before it can read from the rank [74]; this is known as bus
turnaround. Similarly, after reading a rank, CPU must reconfig-
ure the rank to write mode before writing it. To prevent frequent
stalls due to frequent bus turnaround, modern systems typically
write in large batches [17, 19, 26]; for example, in our microarchi-
tecture parameter design space exploration in Section 5, we find

a write batch size of ∼100 maximizes the average performance for
the baseline memory system. Note that in addition to minimizing
bus turnaround, large write batch size also helps the scheduler im-
prove write requests’ row hit rate (i.e., how often a request accesses
an already opened row). Unfortunately, writing in large batches
requires stalling read requests for a long time.

Row-to-rowDelay (tRRD)&Four-activationWindow (tFAW).
CPU can only activate (i.e., open a new DRAM row in) a bank in
a rank after tRRD has passed since the last time it had activated a
bank in the same rank. Similarly, CPU can only activate at most
four banks in a rank within tFAW. tRRD and tFAW help to meet
memory chip-level power constraint.

Row-to-columnDelay (tRCD)&PrechargeDelay (tRP). Prior
to accessing a new DRAM row in a bank, CPU must first activate
the DRAM row and wait row-to-column delay. Furthermore, before
CPU activates a new DRAM row in a bank, the bank must be in the
closed state; otherwise, CPU must first issue a precharge command
and wait tRP to close the bank before activating a row in the bank.

4.2 Reading from Memory Under FMR
To hide state-dependent latencies, FMR stores a copy of a logical
block in a free location in a different rank. This enables MC to fetch
from the rank with the faster state at the time of LLC miss. To
avoid inconsistency in the cache hierarchy, MC always inserts the
block into the cache hierarchy using LLC misses’ original physical
addresses even when MC fetches from replicating locations.

Making Refresh Nonblocking for Read Requests. Existing
systems typically refresh one rank at a time [12] in a memory
channel, which is a group of one or more ranks that share the
same I/O connections (called the memory bus) to the processor.
When there are two copies of a memory block residing in two
different ranks in the same channel, at most one of the two copies
is inaccessible due to refresh at any given time. MC can completely
hide all refresh latency for LLC misses by satisfying them using the
copy residing in a rank that is not currently refreshing.

Making Large Write Batches Nonblocking for Read Re-
quests. To prevent a batch of writes from blocking read requests,
MC can write to only one rank in a channel at a time. When a rank
is in write mode, MC can use another rank to satisfy all LLC misses
as long as the latter has a copy of every block in the former.

Mitigating tRRD and tFAW. Having two copies of the same
logical block in two different ranks gives MC the freedom to fetch
from the rank where tRRD and tFAW constraints are already met
to satisfy LLC misses sooner.

Mitigating tRCD and tRP. Having a copy of a logical block in
a second rank and, therefore, bank can mitigate precharge-induced
read stalls by allowing MC to read from a second bank that is
currently closed instead of reading from an original bank that is
currently open. When a pair of banks have identical content due
to memory replication, MC can improve row hit rate and, thereby,
mitigate activation-induced read stalls in two scenarios. First, if
one of the banks in the pair is closed and the other is open, MC can
purposefully cease to speculatively3 close the open bank without
suffering from increased row conflict rate (i.e., how often LLCmisses
3Some row buffer policies, such as the closed page policy or timeout policy, predict
whether the currently opened row in a bank is dead (i.e., it will not be accessed in the
near future); if a row is predicted to be dead, MC speculatively closes the row early

MICRO-52, October 12–16, 2019, Columbus, OH, USA Panwar and Zhang and Pang, et al.

This rank is refreshing or in write mode?

Serving the req via this rank requires more cmds than via the other
rank (e.g., precharge+activate+read vs. activate+read)?

Other rank is ready for the req’s next cmd, but this rank is not (e.g.,
next cmd is activate and this rank has not yet met tRRD or tFAW)?

Neither rank is in either of these states

Require same # of cmds

Both ranks are ready

Serve req via other rank Serve req via this rank

No

Yes

Yes

Yes

Yes

This requires
fewer cmds

This is ready
but other is not

Req’s next cmd is precharge and this bank is accessed more recently?

(A) Scheduling Read Requests

(B) Scheduling Speculative Precharge
A bank’s open row is predicted dead (via default row buffer policy)?

Other rank’s bank with the same content as this bank is currently closed?

Keep this bank open Precharge this bank

No

Yes
Yes

No

Other is refreshing
or writing

Figure 4: FMR provides new scheduling choices (shown in
green) for: (A) read requests and (B) row buffer policy.

access banks currently opened to wrong rows) because a future
LLC miss requiring a new row can be served by the closed bank;
minimizing how often open banks are closed speculatively strictly
improves row hit rate. Second, if both banks in the pair currently
have the wrong row open at the time of LLC miss, MC can close
the less recently accessed bank; keeping more recently accessed
row/bank open longer strictly improves row hit rate.

Figure 4 summarizes the new scheduling choices that FMR pro-
vides for read requests and speculative precharge operations (a.k.a,
the page/row buffer policy).

4.3 Writing to Memory Under FMR
To hide refresh latency for write requests, we note that write re-
quests are not on the critical path of program execution; as such,
stalling write requests only slows down performance when the
channel’s write buffer is full, which can cause CPU to stall. To pre-
vent CPU from stalling due to write requests to refreshing ranks
clogging up the write buffer, we add a writeback cache to each
channel between LLC and the channel’s write buffer to cache write
requests to the refreshing rank, similar to [62]. The writeback cache
is only used as a storage buffer for write requests, unlike regular
write buffer, which is also used by the memory scheduler to scan for
writes to the same row to increase row hit rate. Write requests are
always first placed into the writeback cache and then later drained
to the write buffer. The writeback cache only drains a write request
to the write buffer if the rank the request will go to is not currently
refreshing. Because refresh can take a long time (e.g., 550ns for
16Gb DDR4 memory chips [41]), we organize the writeback cache
as a large 16KB 64-way4 set-associative writeback cache.

We also rely on the writeback cache to write to only one rank at
a time to hide read stalls due to batching writes (see Section 4.2).

to speed up future accesses to different rows in the bank due to future LLC misses.
Misprediction reduces row hit rate, however.
4Writeback cache has high associativity because write buffers are also highly asso-
ciative (e.g., fully associative). The writeback cache is only accessed when accessing
memory; its energy per access, as obtained from Cacti [35], is < 1% the energy per
memory access as calculated from MICRON DDR4 datasheet [58].

Addr/Cmd Bus

Chip Select for Rank 0

Data Bus

Memory Channel

Chip Select for Rank 1

Rank 0
DIMM

Rank 1CPU

M
em

or
y

C
on

tr
ol

le
r

Figure 5: Organization of a memory channel today. Each
rank has a dedicated chip select (CS) bit [57, 59, 61].

Writeback cache starts draining writes to the write buffer if one of
the sets exceeds a high watermark of 75%. Writeback cache selects
the rank with the highest occupancy in this set and then drains to
the write buffer write requests belonging to the selected rank by
visiting all sets in a round robin manner and draining one write
when visiting the set. Writeback cache stops draining writes if it no
longer has any write to the selected rank or the write buffer is full.

For write requests to logical memory blocks with a replica, MC
must update both copies of the block to ensure consistency. To track
which copy still needs to be written, we add two bits to each entry
in the writeback cache to record which copy or copies still need
to be updated/written to. The writeback buffer removes a write
request only after both of its bits are currently false.

Finally, we note writing memory twice for each write request
doubles memory bus utilization for writes; this can incur high per-
formance overheads for write-intensive applications. To address the
bandwidth overhead to write to both ranks, we observe that multi-
ple ranks in a channel are connected to a shared bus and that the
bus interconnection topology in general benefits from the unique
message broadcasting capability that has long been exploited in
on-chip networks to broadcast/multicast coherence messages. We
propose exploiting the multicasting capability of the memory bus
to simultaneously write/update both copies of the same logical
block in a single memory bus transaction and, thereby, avoid band-
width overheads for replication. Note that even in current server
systems, CPU physically broadcasts every message to all ranks
simultaneously over the shared bus and logically directs a message
to the intended rank by asserting the intended rank’s dedicated
chip-select (CS) bit (see Figure 5); unintended ranks ignore all mes-
sages on the bus because their CS bits are deasserted. As such, to
enhance CPU to multicast the same message to two ranks in a chan-
nel simply requires it to assert both ranks’ CS bits simultaneously
when transmitting the message. We confirmed with MICRON’s
chief technologist [65, 66] that while commodity memory buses
are currently designed to write to one rank in a channel at a time,
reusing them as is to write to two ranks at a time incurs minimal
to no impact on bus signal integrity. Section 4.5 explains in detail.

To exploit memory bus multicasting to simultaneously update
both copies of the same logical block in one bus transaction, MC
must map both copies to identical DRAM locations (i.e., with same
bank ID, row ID, and column ID) across two ranks in the same chan-
nel. Otherwise, CPUmust issue two separate write commands, each
communicating a different DRAM location over the bus; since the
two write commands are spread out in time, the subsequent write
data must also be spread out in time, resulting in two completely

Quantifying Memory Underutilization in HPC Systems and Using it to Improve Performance via Architecture Support MICRO-52, October 12–16, 2019, Columbus, OH, USA

separate writes. Furthermore, mapping both copies to identical
DRAM locations, which includes identical bank ID, also creates
pairs of banks with identical content, which are required by our
optimization to mitigate tRCD and tRP in Section 4.2. We will de-
scribe how to map the original and its replica to identical DRAM
locations across two ranks in the same channel in Section 4.4. We
also note that before multicasting writes to two ranks, MC must
first synchronize them by issuing a precharдe_all command; this
synchronization overhead is small, however, because it is amortized
over the many writes in a batch.

Unfortunately, at the same time, MC cannot bothmulticast writes
to eliminate write bandwidth overhead and write to only one rank
at time to make batched writes nonblocking for reads. We note the
benefit of reducing bandwidth overhead is only higher than the
benefit of making writes nonblocking when bandwidth utilization is
high. As such, we propose dynamically switching between the two
write modes according to the instantaneous bandwidth utilization.
MC switches from nonblocking writes to multicast writes when the
writeback cache becomes so full that it cannot hold an incoming
write request from LLC. MC switches from multicast writes back to
nonblockingwrites if thewriteback cache can always hold incoming
write requests for a continuous period of 100µs.

4.4 Memory Layout Details
Because a CPU’s CPU-visible free page is located in the CPU’s
higher physical address range (see Section 3.3), we assign physical
address O(p) = p + S

2 (i.e., when it is free) to replicate the logical
block stored at physical address p; S stands for a CPU’s installed
physical memory size. This simple and fast assignment function
O(p) works for both single-socket and multiple-socket systems. A
CPU’s MC can quickly tell whether a block at p is replicated by
checking whether O(p) is within the address range recorded in the
CPU’s CVFM register; each MC keeps a local copy of the CVFM
register value for fast lookup. After OS calls ACPI to expand the
CPU-visible free page, MC must initialize the physical memory
newly added to the CPU-visible free page; MC copies the value at
p to O(p) for every uninitialized O(p) in the CPU-visible free page.
MC can perform this asynchronously in the background whenever
there is slack in memory bandwidth utilization.

To reap the performance benefits described in Section 4.2, MC
must map p and O(p) to different ranks. Furthermore, as discussed
in Section 4.3, multicasting writes requires MC to map p and O(p)
to identical DRAM locations across two different ranks in the same
channel. Finally, we note that simultaneously writing to two ranks
in the same memory module may exceed the power/thermal budget
for corner-case power-limited memory modules (e.g., DIMMs with
many ranks). As such, MC should preferably map p andO(p) to two
ranks that differ by N /2 in their rank IDs, where N is the number
of ranks per channel, to map them to different DIMMs to preserve
each DIMM’s original power and thermal profile when there are
multiple DIMMs per channel.5

5In systems with only one DIMM per channel, multicasting writes still works for many
DIMM configurations because the number of power pins in a JEDEC-compliant DIMM
socket is designed for worst-case DIMM configuration with maximum current draw.
For example, 2-rank R-DIMMs and 8-rank R-DIMMs have identical DIMM-level pin
count, even though the two R-DIMMs differ by 5X in their peak current draw (see [61]
and [60]). We also confirmed that simultaneously writing to two ranks in the same
commodity DIMM is feasible through MICRON’s Chief Technologist [66].

Before describing our proposed mapping to satisfy the above
requirements, we first define address mapping terminologies. In
current systems, MC translates the physical address p to its DRAM
location d using a simple static direct-mapped (i.e., one-to-one)
function d = fP→D (p), where P is the set of all physical addresses
in a system and D is the set of all DRAM addresses. fP→D (p) is of-
ten a collection of functions (i.e., fP→channel ID (p), fP→rankID (p),
fP→(bankID), fP→columnID (p), and fP→rowID (p)) that compute
the memory channel ID, rank ID, bank ID, row ID, and column ID,
which collectively make up a DRAM address. For brevity, we refer to
all functions under fP→D (p) other than fP→rankID (p) collectively
as fP→Other IDs (p).

We propose a general transformation to derive from an arbi-
trary fP→D (p) a f ′P→D (p) such that f ′P→rankID (p) differs from
f ′P→rankID (O(p)) byN /2 and f ′P→Other IDs (p)=f

′
P→Other IDs (O(p)).

Our proposed transformation only has two restrictions. First, N
(i.e., the number of ranks per channel) is even. Second, the origi-
nal fP→rankID (p) is periodic; a good example is the well-known
fP→rankID (p) = (p/L)mod(N) function, which interleaves across
different ranks adjacent memory segments of size L, where L can
be any multiple of 64B.

For clarity, we will describe f ′P→D (p) for single-socket systems.
One can easily adapt f ′P→D (p) designed for single-socket systems
to multi-socket systems as CPUs can preserve the appearance of
single-socket systems for the purpose of calculating physical to
DRAM address mapping within the socket; this adaptation requires
MC to subtract all physical addresses byMinsocket before giving
them as input to fP→D (p), where Minsocket is lowest physical
memory address assigned to the socket.

To derive f ′P→rankID (p), we note that one can visualize the pe-
riodic sequences {fP→rankID (0L), fP→rankID (1L),...,
fP→rankID (((

S
2 − 1)/L) · L)} and {fP→rankID (O(0L)) =

fP→rankID (
S
2 + 0L), fP→rankID (O(1L)) = fP→rankID (

S
2 + 1L),...,

fP→rankID (O(((
S
2 −1)/L) ·L)) = fP→rankID (((S−1)/L) ·L) } as the

motions of two circular clocks startingwith different initial clock po-
sitions. As such, to derive f ′P→rankID (p) such that f ′P→rankID (p)

and f ′P→rankID (O(p)) always differ by N /2, one simply needs to
apply a constant offset to initialize the starting position of the
second periodic/clock sequence to differ by N /2 compared to the
starting position of the first periodic/clock sequence. Concisely,

f ′P→rankID (p) =

{
fP→rankID (p), if p < S

2
fP→rankID (p +C), if p >= S

2

The constant C is different for different original fP→rankID (p)
functions; for the example of fP→rankID (p) = (p/L)mod(N), C =
L · ⌈N /2⌉ − (S2 /L)mod(N).

After transforming fP→rankID (p) to f ′P→rankID (p), one can
obtain f ′P→other IDs (p) as follows:
f ′P→other IDs (p) ={

fP→other IDs (p mod(S)), if f ′P→rankID (p) <
N
2

fP→other IDs (O(p)mod(S)), otherwise

Proof. Proving f ′P→other IDs (p) = f ′P→other IDs (O(p)) requires
proving the equality holds for both anyp1 such that f ′P→rankID (p1)

MICRO-52, October 12–16, 2019, Columbus, OH, USA Panwar and Zhang and Pang, et al.

B0 B1
R0

Channel 0

B0 B1
R1

B0 B1
R2

B0 B1
R3

(a) (b)

12
8
4
0

13
9
5
1

14
10
6
2

15
11
7
3

B0 B1
R0

Channel 1

B0 B1
R1

B0 B1
R2

B0 B1
R3

B0 B1
R0

Channel 0

B0 B1
R1

B0 B1
R2

B0 B1
R3

B0 B1
R0

Channel 1

B0 B1
R1

B0 B1
R2

B0 B1
R3

B0 B1
R0

Channel 0

B0 B1
R1

B0 B1
R2

B0 B1R3

B0 B1
R0

Channel 1

B0 B1
R1

B0 B1
R2

B0 B1R3

14
10
4
0

15
11
5
1

6
2
12
8

7
3
13
9

(c)

Figure 6: (a) Original physical-to-DRAM address mapping
(i.e., fP→D (p)). B is Bank. R is Rank. 16 different colors re-
fer to 16 different memory segments. (b) Physical-to-DRAM
address mapping after applying the rank ID transformation
(i.e., f ′P→rankID (p)). (c) Physical-to-DRAM address mapping
after applying the transformation for other DRAM location
IDs (i.e., f ′P→other IDs (p)). Segments with the same hash pat-
terns are p and O(p) pairs; they now differ by N

2 =
4
2 = 2 in

rank ID and have identical row, bank, and channel IDs.

< N
2 and for any p2 such that f ′P→rankID (p2) >=

N
2 . Given any p1,

f ′P→other IDs (p1) = fP→other IDs (p1mod(S)) = fP→other IDs (p1).
Because f ′P→rankID (p) and f ′P→rankID (O(p)) always differ by N/2
for anyp, f ′P→rankID (O(p1)) >=

N
2 ; as such, f

′
P→other IDs (O(p1)) =

fP→other IDs (O(O(p1))mod(S)) = fP→other IDs ((p1+
S
2+

S
2)mod(S)) =

fP→other IDs (p1). Therefore, f ′P→other IDs (p1) = f ′P→other IDs (O(p1)).
Similarly, given anyp2, f ′P→other IDs (p2) = fP→other IDs (O(p2)mod(S)).
Again because f ′P→rankID (p) and f ′P→rankID (O(p)) always differ
by N/2 for any p, f ′P→rankID (O(p2)) <

N
2 ; as such,

f ′P→other IDs (O(p2)) = fP→other IDs (O(p2)mod(S)). Therefore,
f ′P→other IDs (p2) = f ′P→other IDs (O(p2)).

Figure 6 graphically illustrates the transformed f ′P→D (p) for
a simple fP→D (p) mapping scheme that interleaves adjacent ad-
dresses first across column, then channels, banks, ranks, and finally
rows. To clarify the figure, the proposed address mapping function
is static (i.e., a CPU with FMR always uses f ′P→D (p) and never
switches back to fP→D (p)).

4.5 Discussion on Memory Bus Signal Integrity
Simultaneously writing to two ranks in a channel has no impact on
the signal integrity of the memory command bus. Current systems
already broadcast every command over the command bus to all
DRAM chips in all ranks in a memory channel [6]; unintended
ranks know not to act upon the broadcasted command because
their chip select bits are deasserted.

Simultaneously writing to two ranks in a channel also has no
or little impact on signals over the data bus. First, due to modular
chip design, the external data bus is insulated from what the sec-
ond rank’s DRAM chip’s internal digital logic sitting behind its IO
receiver decides to do with the received bus signal (e.g., ignore it

Cores 16 cores, 2.8 Ghz, 4-wide OoO, 2K TLB entries, 192-entry ROB
L1$ Split Data-Instruction, 64 kB, 4-way assoc, 2-cycle latency
L2$ 256 kB per core, 16-way assoc, 12-cycle latency
L3$ 32 MB shared, 16-way assoc, 16ns (on top of L1&L2 Latency),

degree-4 stride prefetcher, prefetch on both hit and miss
MC 8ns round trip latency between MC and LLC,

DDR4-3200, 4 channels, 2 ranks/channel, 16-banks/rank,
XOR-based address mapping for banks,
256-entry read queue/chan, 128-entry write buffer/chan,
0.5KB interleaving across banks & channels,
FR-FCFS memory scheduling policy
Timeout policy: close a row after 200 DRAM cycles (i.e., 125ns)

Table 2: Evaluated Baseline.

in the case of conventional single-rank write or write it to DRAM
array in the case of multicasting write). Second, in existing systems,
all ranks in a channel are allowed to keep their data pins’ IO re-
ceivers active at the same time, as power gating all or part of an IO
receiver whenever a rank is idle can incur costly latency and energy
overheads for some workloads. Third, while changing a rank’s data
pins’ on-die termination (ODT) impedance values can affect signals
over the bus, writing to a rank does not require changing its ODT
values except when using Dynamic ODT, which requires setting
a rank’s ODT to a special RttWr value (see Table 70 in [58]). This
exception can be handled by tuning RttWr [66], which is recon-
figurable [41]. Note that it is not uncommon to not use Dynamic
ODT, which is designed for "certain applications cases" [41, 58]; for
example, it is disabled in most of the memory configurations used
in a recent memory study on AMD Ryzen systems [15].

5 METHODOLOGY
We simulate a 16-core CPU using Gem5 [13] in full system mode.
LLC latency is set to 20ns, which is reported by a recent real-system
study [32] for servers. TLB entry count is set to 2000; this is similar
to the 1.5K TLB entry count in Skylake processors [78]. We simu-
late a DDR4 memory system by incorporating Ramulator [47] into
Gem5; we use DRAM timing and current parameters fromMICRON
DDR4 datasheet [58] and JEDEC’s 550ns tRFC [41], which repre-
sents the refresh latency of latest-generation and future DRAM
chips. We simulate four channels and two ranks per channel to
match the memory configuration of our measured HPC systems.
We interleave 512B of adjacent physical addresses across different
channels, ranks, and then banks and use XOR-based mapping for
channels and banks. These choices model after real-system stud-
ies of modern processors [69]. Table 2 summarizes the simulated
microarchitecture parameters.

We evaluate five HPC benchmark suites – NASA Parallel Bench-
marks (NPB) [7], Graph500 [1], HPCG [25], Linpack [3], and GAP
[11]. We evaluate all benchmarks under the five suites, except for
NPB’s EP, which is tiny; for GAP, we evaluated all but one input
set - the RANDOM input set. We note that because many HPC
benchmarks run for several hours in a real system, identifying rep-
resentative simulation points is important. For each benchmark,
we use Gem5’s KVM CPU, which runs at native execution speed, to
take three checkpoints at ∼1/4, ∼1/2, and ∼3/4 of the benchmark’s
total program execution; subsequently, we simulate from the three

Quantifying Memory Underutilization in HPC Systems and Using it to Improve Performance via Architecture Support MICRO-52, October 12–16, 2019, Columbus, OH, USA

0%
20%
40%
60%
80%

is_
D

bt
_D

cg
_D

ft
_D

lu
_D

m
g_

D
sp

_D
ua

_D
bc

_k
ro

n.
sg

bc
_r

oa
d.

sg
bc

_t
w

itt
er

.s
g

bc
_w

eb
.s

g
bf

s_
kr

on
.s

g
bf

s_
ro

ad
.s

g
bf

s_
tw

itt
er

.s
g

bf
s_

w
eb

.s
g

cc
_k

ro
n.

sg
cc

_r
oa

d.
sg

cc
_t

w
itt

er
.sg

cc
_w

eb
.s

g
pr

_k
ro

n.
sg

pr
_r

oa
d.

sg
pr

_t
w

itt
er

.s
g

pr
_w

eb
.s

g
ss

sp
_k

ro
n.

w
sg

ss
sp

_t
w

itt
er

.w
sg

ss
sp

_w
eb

.w
sg

tc
_k

ro
nU

.s
g

tc
_r

oa
dU

.s
g

tc
_t

w
itt

er
U.

sg
tc

_w
eb

U
.sg

lin
pa

ck
G

ra
ph

50
0

 b

fs
ss

sp
hp

cg
N

PB
 a

vg
G

AP
 a

vg
G

ra
ph

50
0

av
g

Av
g

of
 S

ui
te

s
Av

g
of

 B
en

ch
m

ar
ks

NPB GAP

Ba
nd

w
id

th
 U

til
iza

tio
n Read Bandwidth Write Bandwidth

Figure 7: Workload characterization: bandwidth utilization
breakdown between reads (including prefetch) and writes
under the primary baseline.

0%
20%
40%
60%
80%

100%

is_
D

bt
_D

cg
_D

ft
_D

lu
_D

m
g_

D
sp

_D
ua

_D
bc

_k
ro

n.
sg

bc
_r

oa
d.

sg
bc

_t
w

itt
er

.s
g

bc
_w

eb
.s

g
bf

s_
kr

on
.s

g
bf

s_
ro

ad
.s

g
bf

s_
tw

itt
er

.s
g

bf
s_

w
eb

.s
g

cc
_k

ro
n.

sg
cc

_r
oa

d.
sg

cc
_t

w
itt

er
.sg

cc
_w

eb
.s

g
pr

_k
ro

n.
sg

pr
_r

oa
d.

sg
pr

_t
w

itt
er

.s
g

pr
_w

eb
.s

g
ss

sp
_k

ro
n.

w
sg

ss
sp

_t
w

itt
er

.w
sg

ss
sp

_w
eb

.w
sg

tc
_k

ro
nU

.s
g

tc
_r

oa
dU

.s
g

tc
_t

w
itt

er
U.

sg
tc

_w
eb

U
.sg

lin
pa

ck
G

ra
ph

50
0

bf
s

ss
sp

hp
cg

N
PB

 a
vg

G
AP

 a
vg

G
ra

ph
50

0
av

g
Av

g
of

 S
ui

te
s

Av
g

of
 B

en
ch

m
ar

ks
NPB GAP

%
 R

at
e

Demand Reads Row Hit Rate Demand Reads Bank Conflict Rate

Figure 8: Workload characterization: row hit rate and bank
conflict rate of demand read requests under the baseline.

checkpoints to measure the benchmark’s memory bandwidth uti-
lization6 at these three different points in program execution. We
then pick the representative simulation point as the checkpoint7
that exhibits the median bandwidth utilization across all three
checkpoints. For each cycle-accurate simulation, we first warm up
the cache via 10ms of atomic simulation, then warm up the branch
predictor and prefetcher via 10ms of cycle-accurate simulation,8
and report the performance observed during the next 10ms of cycle-
accurate simulation. Because all benchmarks are parallel (i.e., 16
threads or 16 MPI processes), we use FLOPs (floating operations
per second) to measure performance for floating point benchmarks
and use committed store instructions for the rest. Figure 7 charac-
terizes the memory bandwidth utilization of each benchmark at its
chosen checkpoint under the baseline memory system. Finally, we
model CPU power via McPAT [51] and use its 22nm power model;
we scaled down the output linearly to model 14nm. We modeled
memory power via DRAMPower [16] by setting 18 chips/rank.

We optimize our primary baseline by using cheaper 4-core sim-
ulations to perform multi-dimensional space exploration to deter-
mine the best prefetch degree, best page policy (e.g., among open
policy, closed policy, and timeout policies of different thresholds),
and best write buffer size (and thus write batch size) that yield the
maximum average baseline performance for the evaluated bench-
marks. We also implement in the baseline the optimization in [17]
that switches a channel to write mode when all pending read re-
quests in the channel are blocked due to refresh. Finally, since FMR
6Our evaluation shows that FMR’s performance benefit depends significantly on
bandwidth utilization; in general, FMR provides more performance benefit when
bandwidth utilization is higher.
7We did not use Simpoint [67] because it is designed for serial benchmarks. If you
want to use these checkpoints either to verify this research or for your own research,
contact us and we will share the checkpoints.
8We ensure all schemes execute the same number of instructions during cycle-accurate
warmup by making DRAM latency constant during this period.

requires an additional 16KB writeback cache per channel, we also
add a 16KB writeback cache to the baseline for fair comparison;
this improves baseline’s average performance by 0.5%.

We optimistically model a prior work – Nonblocking Memory
Refresh [62, 63] - by setting refresh latency to 0; all other settings
are identical with the primary baseline.

We model a second prior work, Duplicon Cache [54], which stati-
cally reserves 64MB of off-chip DRAM for each channel to replicate
data in DRAM. Because the simulated CPU has four channels, we
model a 256MB Duplicon Cache.

To evaluate FMR, we assume the CPU-visible free page can fully
replicate all in-use memory; Section 6.3 discusses the validity of
this assumption. FMR uses the same setting as the primary baseline
(e.g., same prefetcher setting, page timeout setting, write buffer size,
etc.) wherever possible.

6 RESULTS
Figure 9 shows the performance of FMR normalized to the primary
baseline. FMR improves performance by 13.7% when weighing
each of the five benchmark suite equally. When weighing each of
the 35 benchmarks equally, FMR improves performance by 12.2%.
On average across both types of averages, the average benefit is
13%. Benchmarks that benefit the most from FMR are hpcд, cд_D,
bc_kron.sд, b f s_kron.sд; these benchmarks are characterized by
high memory bandwidth utilization (see Figure 7) and low spatial lo-
cality (see Figure 8). Benchmarks that benefit the least from FMR are
linpack , b f s_road .sд, bc_road .sд, tc_kronU .sд, tc_webU .sд; these
benchmarks are characterized by low memory bandwidth utiliza-
tion (see Figure 7) or very high spatial locality (see Figure 8).

Figure 9 also shows the performance of Nonblocking Memory
Refresh normalized to the primary baseline; compared to Non-
blocking Memory Refresh, FMR provides an additional 6.3% and
4% average performance improvement over the primary baseline
when averaging equally across benchmark suites and averaging
equally across benchmarks, respectively. FMR also provides an-
other important benefit over Nonblocking Memory Refresh - FMR
can be deployed on commodity memory systems with commodity
memory chips and modules, whereas NonblockingMemory Refresh
modifies processor-memory interface/protocol [62].

To evaluate the Duplicon Cache baseline, wewarmed up a 256MB
Duplicon Cache for 200 simulated milliseconds in Gem5’s atomic
CPU mode to eliminate cold misses. Figure 10 shows the demand

1

1.05

1.1

1.15

1.2

1.25

is_
D

bt
_D

cg
_D

ft
_D

lu
_D

m
g_

D
sp

_D
ua

_D
bc

_k
ro

n.
sg

bc
_r

oa
d.

sg
bc

_t
w

itt
er

.s
g

bc
_w

eb
.s

g
bf

s_
kr

on
.s

g
bf

s_
ro

ad
.s

g
bf

s_
tw

itt
er

.s
g

bf
s_

w
eb

.s
g

cc
_k

ro
n.

sg
cc

_r
oa

d.
sg

cc
_t

w
itt

er
.sg

cc
_w

eb
.s

g
pr

_k
ro

n.
sg

pr
_r

oa
d.

sg
pr

_t
w

itt
er

.s
g

pr
_w

eb
.s

g
ss

sp
_k

ro
n.

w
sg

ss
sp

_t
w

itt
er

.w
sg

ss
sp

_w
eb

.w
sg

tc
_k

ro
nU

.s
g

tc
_r

oa
dU

.s
g

tc
_t

w
itt

er
U.

sg
tc

_w
eb

U
.sg

lin
pa

ck
G

ra
ph

50
0

bf
s

ss
sp

hp
cg

N
PB

 a
vg

G
AP

 a
vg

G
ra

ph
50

0
av

g
Av

g
of

 S
ui

te
s

Av
g

of
 B

en
ch

m
ar

ks

NPB GAP

Pe
rf.

 n
or

m
. t

o
 p

rim
ar

y
ba

se
lin

e

FMR Nonblocking Refresh

Figure 9: Performance normalized to the primary baseline.

MICRO-52, October 12–16, 2019, Columbus, OH, USA Panwar and Zhang and Pang, et al.

0%
20%
40%
60%
80%

100%

is
_D

bt
_D

cg
_D ft
_D

lu
_D

m
g_

D
sp

_D
ua

_D
bc

 a
vg

bf
s

av
g

cc
 a

vg
pr

 a
vg

ss
sp

 a
vg

tc
 a

vg
lin

pa
ck

G
ra

ph
50

0

bf
s

ss
sp

hp
cg

Av
g

of
 S

ui
te

s
Av

g
of

 B
en

ch
m

ar
ks

Hi
t R

at
e

NPB GAP

Figure 10: Duplicon Cache demand read hit rate.

50%

60%

70%

80%

90%

100%

is
_D

bt
_D

cg
_D

ft
_D

lu
_D

m
g_

D
sp

_D
ua

_D
bc

_k
ro

n.
sg

bc
_r

oa
d.

sg
bc

_t
w

it
te

r.s
g

bc
_w

eb
.s

g
bf

s_
kr

on
.s

g
bf

s_
ro

ad
.s

g
bf

s_
tw

it
te

r.s
g

bf
s_

w
eb

.s
g

cc
_k

ro
n.

sg
cc

_r
oa

d.
sg

cc
_t

w
it

te
r.s

g
cc

_w
eb

.s
g

pr
_k

ro
n.

sg
pr

_r
oa

d.
sg

pr
_t

w
itt

er
.s

g
pr

_w
eb

.s
g

ss
sp

_k
ro

n.
w

sg
ss

sp
_t

w
itt

er
.w

sg
ss

sp
_w

eb
.w

sg
tc

_k
ro

nU
.s

g
tc

_r
oa

dU
.s

g
tc

_t
w

it
te

rU
.s

g
tc

_w
eb

U
.s

g
lin

pa
ck

G
ra

ph
50

0

bf

s
ss

sp
hp

cg
N

PB
 a

vg
G

AP
 a

vg
G

ra
ph

50
0

av
g

Av
g

of
 S

ui
te

s
Av

g
of

 B
en

ch
m

ar
ks

NPB GAP

EP
I n

or
m

. t
o

ba
se

lin
e

CPU Contribution DRAM Contribution

Figure 11: FMR’s Energy per instruction (EPI) normalized
to baseline. Each stacked bar shows the total EPI. The two
segments in each stacked bar show CPU’s and DRAM’s con-
tribution to the total EPI.

read hit rate of Duplicon Cache during 20ms of simulated time
after warmup; it is only 26% when averaging across benchmarks
equally and 29% when averaging across suites equally. The read
hit rate is low because the average memory footprint of our HPC
benchmarks is 20GB; in comparison, the average footprint of the
benchmarks the Duplicon Cache paper evaluates is only ∼2GB as
they are mostly desktop workloads. While making Duplicon Cache
bigger can improve its hit rate, this is expensive because (i) memory
Duplicon Cache uses are always hidden from and thus unusable
by OS and (ii) Duplicon Cache tracks replicated blocks in memory
via a large on-chip SRAM tag that increases linearly with Duplicon
Cache size. As such, Duplicon Cache can only provide 26% to 29%
the performance benefit of FMR in the ideal case; the actual benefit
should be much lower for several reasons. First, we find that nearly
100% of writebacks hit in Duplicon Cache because dirty blocks
evicted from the 32MB LLC almost always hit in the much bigger
256MB Duplicon Cache; as such, writes to memory require nearly
double bandwidth, as Duplicon Cache does not and cannotmulticast
writes. Second, Duplicon incurs an overhead memory write request
even for read requests that miss in Duplicon Cache to insert the
new block to Duplicon Cache. Third, Duplicon Cache, as described
in its paper, only replicates blocks across banks in the same rank;
as such, it does not mitigate rank-level latencies as does FMR.

We note that the 13% node-level speedup FMR provides may not
translate directly to 13% speedup for distributed workloads running
across multiple nodes. However, making each node 13% faster can
allow a distributed workload to complete in same (or less, as fewer
nodes means less network communication overheads) amount of

0%

25%

50%

75%

100%

is_
D

bt
_D

cg
_D

ft
_D

lu
_D

m
g_

D

sp
_D

ua
_D

bc
 a

vg

bf
s a

vg

cc
 a

vg

pr
 a

vg

ss
sp

 a
vg

tc
 a

vg

lin
pa

ck

G
ra

ph
50

0
 b

fs

ss
sp

hp
cg

NPB GAP

Pe
rc

en
ta

ge

Reads served by memory block replicas Time spent under multicasting writes

Figure 12: (A) Fraction of read requests that are satisfied us-
ing amemory block copy in a freememory location. (B) Frac-
tion of time spent under multicasting writes mode.

0%
25%
50%
75%

100%
125%
150%
175%
200%

is_
D

bt
_D

cg
_D

ft
_D

lu
_D

m
g_

D
sp

_D
ua

_D
bc

_k
ro

n.
sg

bc
_r

oa
d.

sg
bc

_t
w

itt
er

.s
g

bc
_w

eb
.s

g
bf

s_
kr

on
.s

g
bf

s_
ro

ad
.s

g
bf

s_
tw

itt
er

.s
g

bf
s_

w
eb

.s
g

cc
_k

ro
n.

sg
cc

_r
oa

d.
sg

cc
_t

w
itt

er
.sg

cc
_w

eb
.s

g
pr

_k
ro

n.
sg

pr
_r

oa
d.

sg
pr

_t
w

itt
er

.s
g

pr
_w

eb
.s

g
ss

sp
_k

ro
n.

w
sg

ss
sp

_t
w

itt
er

.w
sg

ss
sp

_w
eb

.w
sg

tc
_k

ro
nU

.s
g

tc
_r

oa
dU

.s
g

tc
_t

w
itt

er
U.

sg
tc

_w
eb

U
.sg

lin
pa

ck
G

ra
ph

50
0

bf
s

ss
sp

hp
cg

N
PB

 a
vg

G
AP

 a
vg

G
ra

ph
50

0
av

g
Av

g
of

 S
ui

te
s

Av
g

of
 B

en
ch

m
ar

ks

NPB GAP

N
or

m
. t

o
ba

se
lin

e

Demand Reads Row Hit Rate (higher the better) Demand Reads Bank Conflict Rate (lower the better)

Figure 13: Row hit rate and bank conflict rate of demand
reads in FMR normalized to the primary baseline.

time while occupying 13% fewer nodes. Achieving same or higher
workload-level performance while occupying 13% fewer nodes can
improve workload-level energy efficiency by >=13%; this also frees
up 13% of nodes to run other workloads and, therefore, help improve
HPC-system-wide throughput by 13%.

In terms of system-level (i.e., CPU+DRAM) energy efficiency,
FMR reduces energy per instruction (EPI) by 8% compared to the
primary baseline. Although FMR increases DRAM write power
(but not idle power) due to performing two DRAM writes for each
memory write request, FMR still reduces system-level EPI because
CPU power is much higher than DRAM power. In addition, CPU
idle power dominates dynamic power according to McPat. As such,
the reduction in CPU idle energy due to improving performance
outweighs the energy overheads due to doubling writes.

6.1 Memory Behavior Analysis
Figure 12 shows the fraction of read requests that are satisfied using
duplicate memory blocks under FMR. On average, 45.5% of all read
requests are satisfied using duplicate memory blocks residing in
free memory locations; this is to be expected, as each rank has
∼50% chance of being faster than another rank for an incoming
read request. Figure 12 also shows the fraction of time spent under
multicasting writes (as opposed to nonblocking writes); it is high for
benchmarks with high write bandwidth utilization, such as f t_D,
lu_D,mд_D, and sp_D (See Figure 7).

Figure 13 shows the row hit rate and bank conflict rate of de-
mand read requests (i.e., excluding prefetch requests) under FMR
normalized to those of the primary baseline. On average across all

Quantifying Memory Underutilization in HPC Systems and Using it to Improve Performance via Architecture Support MICRO-52, October 12–16, 2019, Columbus, OH, USA

0
20
40
60
80

100
120

is_
D

bt
_D

cg
_D

ft
_D

lu
_D

m
g_

D
sp

_D
ua

_D
bc

_k
ro

n.
sg

bc
_r

oa
d.

sg
bc

_t
w

itt
er

.s
g

bc
_w

eb
.s

g
bf

s_
kr

on
.s

g
bf

s_
ro

ad
.s

g
bf

s_
tw

itt
er

.s
g

bf
s_

w
eb

.s
g

cc
_k

ro
n.

sg
cc

_r
oa

d.
sg

cc
_t

w
itt

er
.sg

cc
_w

eb
.s

g
pr

_k
ro

n.
sg

pr
_r

oa
d.

sg
pr

_t
w

itt
er

.s
g

pr
_w

eb
.s

g
ss

sp
_k

ro
n.

w
sg

ss
sp

_t
w

itt
er

.w
sg

ss
sp

_w
eb

.w
sg

tc
_k

ro
nU

.s
g

tc
_r

oa
dU

.s
g

tc
_t

w
itt

er
U.

sg
tc

_w
eb

U
.sg

lin
pa

ck
G

ra
ph

50
0

bf
s

ss
sp

hp
cg

N
PB

 a
vg

G
AP

 a
vg

G
ra

ph
50

0
av

g
Av

g
of

 S
ui

te
s

Av
g

of
 B

en
ch

m
ar

ks

NPB GAP

Av
g.

 D
em

an
d

Re
ad

 L
at

 (
ns

)

FMR Baseline

Figure 14: Average DRAM Demand Read Latency (ADDRL)
of FMR and primary baseline.

benchmarks, FMR increases row hit rate by 40% while reducing
bank conflict rate by 43%.

Figure 14 shows the average DRAM latency of L3 demand misses
under the primary baseline and under FMR; for simplicity, we refer
to this average latency as Average DRAM Demand Read Latency or
ADDRL. The primary baseline’s average DRAM latency for L3 de-
mand miss is 59ns. FMR reduces ADDRL by 30%. Note that adding
the baseline’s 59ns ADDRL to the L1,L2,L3 hit latencies and 8ns
LLC-to-MC latency in Table2 gives 87ns per memory access; this
closely matches the 92ns loadedmemory latency a prior real-system
study reports for servers [32]. We note that for some workloads,
while FMR substantially improves performance, its ADDRL can be
very similar to baseline’s ADDRL. Consider for examplepr_kron.sд;
while FMR improves performance by 16%, ADDRL under FMR is
92% normalized to that of the baseline. In other word, FMR im-
proves performance by a substantially greater amount compared to
how much FMR reduces ADDRL. This seemingly counter-intuitive
phenomenon likely occurs because improving an application’s per-
formance increases memory access rate and thus memory queuing
delay, which in turn increases ADDRL. We believe FMR would
show much more significant ADDRL reduction if FMR’s perfor-
mance/memory access rate were somehow artificially throttled to
match that of the baseline.

6.2 Sensitivity Analysis
We evaluate the sensitivity of FMR with memory system configura-
tion of 4 ranks per channel. Figure 15 shows the performance of
FMR and Nonblocking Memory Refresh normalized to the primary
baseline for the quad-rank configuration. FMR improves perfor-
mance by 13.5% when weighing each of the five benchmark suite
equally, and by 14.1% when weighing each of the 35 benchmarks
equally. The average differences in the performance benefit that
FMR provides under different memory system configurations –
dual-rank and quad-rank are small; the average differences are 0.2%
and 1.9%, when weighing benchmark suites equally and weighing
benchmarks equally, respectively. As such, FMR provides robust
benefits across different memory system configurations.

6.3 Real-system Emulation
Memory Compaction Overhead. Expanding the CPU-visible
free page requires memory compaction, which can be expensive
(See Section 3.3). To estimate this overhead, we measured the
throughput of memory compaction on a real node. First, we created
a simple microbenchmark to fragment free memory in the node; it

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

is_
D

bt
_D

cg
_D

ft
_D

lu
_D

m
g_

D
sp

_D
ua

_D
bc

_k
ro

n.
sg

bc
_r

oa
d.

sg
bc

_t
w

itt
er

.s
g

bc
_w

eb
.s

g
bf

s_
kr

on
.s

g
bf

s_
ro

ad
.s

g
bf

s_
tw

itt
er

.s
g

bf
s_

w
eb

.s
g

cc
_k

ro
n.

sg
cc

_r
oa

d.
sg

cc
_t

w
itt

er
.sg

cc
_w

eb
.s

g
pr

_k
ro

n.
sg

pr
_r

oa
d.

sg
pr

_t
w

itt
er

.s
g

pr
_w

eb
.s

g
ss

sp
_k

ro
n.

w
sg

ss
sp

_t
w

itt
er

.w
sg

ss
sp

_w
eb

.w
sg

tc
_k

ro
nU

.s
g

tc
_r

oa
dU

.s
g

tc
_t

w
itt

er
U.

sg
tc

_w
eb

U
.sg

lin
pa

ck
G

ra
ph

50
0

bf
s

ss
sp

hp
cg

N
PB

 a
vg

G
AP

 a
vg

G
ra

ph
50

0
av

g
Av

g
of

 S
ui

te
s

Av
g

of
 B

en
ch

m
ar

ks

NPB GAP

Pe
rf.

 n
or

m
. t

o
 p

rim
ar

y
ba

se
lin

e FMR Nonblocking Refresh

Figure 15: Performance for normalized to the primary base-
line (quad-rank configuration).

repeatedly calls mmap() at 4KB granularity to consume nearly all
of the node’s free memory, touches the requested pages, then frees
a controlled fraction of random/non-contiguous requested pages,
and finally goes into sleep. Next, we invoke Linux’s built-in memory
compaction routine via the "echo 1 > /proc/sys/vm/compact_memory"
commandline [31] and examine the compaction latency reported
in Linux’s event tracing utility. Using compaction latencies mea-
sured for different controlled amount of fragmented free memory
in the system, we observed a worst-case (i.e., slowest) memory
compaction throughput of compacting 14GB of free memory per
second. Memory compaction throughput steadily increases (by up
to 2X) when there are more free memory.

CPU-Visible Free Page Expansion Policy. Using the mea-
sured worst-case memory compaction throughput and the memory
usage measurements collected in our study in Section 2, we can em-
ulate the performance overhead for the proposed hourly expansion.
We estimate the amount of free memory to compact each hour in
a node as the positive increase in the node’s free memory at the
end of an hour compared to its free memory at the beginning of
the hour; we define a node’s free memory in an hour as the node’s
minimum free memory during the hour. Figure 16 (A) shows the
average amount of free memory to compact per node per hour for
the studied HPC systems. We estimate the average performance
overhead as the average amount of free memory to compact per
hour divided by the 14GB/s compaction throughput divided by
one hour. Figure 16 (B) shows the estimated average performance
overhead due to page migration; they are small (e.g., <0.005%).

While infrequently expanding the CPU-visible page (i.e., once an
hour) effectively minimizes the performance overhead due to page
migration, it can reduce the size of the CPU-visible free page. Using
the memory measurements collected in our study (see Section 2),
we emulated the hourly expansion policy to calculate the fraction of
jobs for which the CPU-visible free memory are always at least half
the memory system size on all nodes the job occupy throughout
the job’s lifetime. Figure 16 (C) shows that FMR can fully replicate
all in-use memory across all nodes occupied by a job for 87% to 90%
of jobs, on average across Grizzly, Badger, and Snow.9

Checking Simulation Results in Silicon. To check our simu-
lated performance improvement, we used a real system to emulate
the performance impact of reducing ADDRL. One can reduce a
real system’s ADDRL in unit of CPU clock cycles by reducing CPU

9Cascade did not record job IDs.

MICRO-52, October 12–16, 2019, Columbus, OH, USA Panwar and Zhang and Pang, et al.

0
0.5
1

1.5
2

2.5

Gr
izz
ly

Ba
dg
er

Sn
ow

Ca
sca
de

Fr
ee

 m
em

or
y t

o
co

m
pa

ct

(G
B/

ho
ur

/n
od

e)
0.000%
0.001%
0.002%
0.003%
0.004%
0.005%

Gr
izz
ly

Ba
dg
er

Sn
ow

Ca
sca
de

Av
g.

 p
er

f.
ov

er
he

ad

(A) (B) (C)

0%
20%
40%
60%
80%
100%

Gr
izz
ly

Ba
dg
er

Sn
ow

Fr
ac

tio
n

of
 jo

bs

Figure 16: Emulation study of the proposed hourly expansion policy for the CPU-visible free page. (A) Average amount of
free memory to compact per hour per node. (B) Average performance overhead. (C) Fraction of jobs in which CPU-visible free
memory can fully replicate all in-use memory across all nodes a job occupies during its entire lifetime.

0%

10%

20%

30%

40%

50%

cg
_D

m
g_

D

ua
_D

bc
_k

ro
n.

sg

bc
_t

w
itt

er
.sg

bf
s_

kr
on

.s
g

bf
s_

tw
itt

er
.s

g

cc
_k

ro
n.

sg

cc
_w

eb
.s

g

pr
_k

ro
n.

sg

pr
_t

w
itt

er
.sg

hp
cg

NP
B

av
g

GA
P

av
g

Av
g

of
 S

ui
te

s

Av
g

of
 B

en
ch

m
ar

ks

NPB GAP

Im
pr

ov
em

en
t

Simulated Performance Emulated Performance Simulated ADDRL

Figure 17: Comparison of simulated and emulated perfor-
mance improvement for a sampling of benchmarks.

clock frequency. As such, it is possible to emulate the performance
impact of reducing ADDRL on a real system by comparing the total
execution time in unit of total CPU clock cycles; in other words,
emulated speedup = (execution time in total CPU clock cycles when
executing a benchmark in the real system under its normal CPU
frequency) divided by (execution time in clock cycles when execut-
ing the benchmark under reduced CPU frequency for emulating
ADDRL reduction). To emulate the performance benefit of FMR for
a benchmark on a real system, we reduce the real system’s CPU
frequency by the same factor that FMR reduces ADDRL as reported
by simulation for the benchmark. For the real-system emulation
to be meaningful, the real system’ cache latency must remain con-
stant in unit of CPU clock cycles when CPU frequency changes;
through extensive microbenchmark testing, we identified a 6-core
Intel Core i7 PC10 satisfying this criteria. We re-simulated a third of
the benchmarks using six threads/processes per benchmark; these
new simulations adopt the evaluated PC’s microarchitecture pa-
rameters (e.g., the PC’s 2666MHz DRAM frequency, the PC’s 8Gb
DRAM chip’s 350ns tRFC, two channels, two ranks/channel, and
12ns L3 hit latency as measured by running the X-mem tool [32]).
Figure 17 also shows FMR’s ADDRL improvement (i.e., 1-FMR’s
ADDRL/baseline’s ADDRL) according to simulation; when emulat-
ing FMR’s performance benefit for an individual benchmark on the

10Unfortunately, we could not find a suitable server-class machine as changing a
machine’s CPU frequency requires root access to the machine and gaining root accesses
to server clusters is difficult.

PC, we multiplied the PC’s CPU frequency by (the benchmark’s
ADDRL under FMR / the benchmark’s ADDRL under baseline).

Figure 17 shows the performance improvement reported by sim-
ulation and the performance improvement reported by real-system
emulation (i.e., emulated speedup minus one). The average perfor-
mance benefits are similar across both sets of experiments; they are
within 5% of each other. However, for individual benchmarks, the
performance improvements reported by simulation and emulation
can vary significantly. pr_kron.sд exhibits the greatest mismatch:
FMR improves performance by 17% according to simulation, but by
only 2% according to emulation. Close inspection of pr_kron.sд re-
veals that while FMR’s performance is 117% normalized to baseline,
FMR’s ADDRL is 96.7% of the baseline (see Figure 17); the discus-
sion surrounding Figure 14 describes why this is possible. Ideally,
the real-system emulation experiments should have used the AD-
DRL FMR can hypothetically achieve had its performance/memory
access rate been throttled to match that of the baseline. This is dif-
ficult to measure, however; as such, our best-effort real-system
emulation experiment underestimates the performance benefit for
pr_kron.sд. For the same reason, the emulated performance im-
provement is lower than simulated performance improvement for
cд_D, bc_kron.sд, bc_twitter .sд, and pr_twitter .sд.

7 GENERALITY
7.1 Other Potential FMTs
Beside hiding DRAM’s dynamic latencies, making microarchitec-
ture free-memory aware can enable other potential use cases to
improve performance. One use case is to enable effective correlated
prefetching [77] for very large applications. Correlated prefetching
requires recording a large amount of past address sequences to
predict future memory addresses. This memory overhead is par-
ticularly high for large applications with tens to hundreds of giga-
bytes of memory footprint. Making microarchitecture free-memory
aware can enable multi-gigabyte correlation history tables to en-
able effective correlated prefetching for large-memory applications.
Such large tables are impossible for existing correlated prefetchers,
which all use static memory locations to store their metadata.

Another use case is to reduce page walk overhead. A TLB miss
requires an expensive page walk that takes up to five memory ac-
cesses [37]. Naively reducing this overhead by adding more TLB

Quantifying Memory Underutilization in HPC Systems and Using it to Improve Performance via Architecture Support MICRO-52, October 12–16, 2019, Columbus, OH, USA

entries in the CPU incurs high static area overhead. Making mi-
croarchitecture free-memory aware can opportunistically enable
large gigabyte-sized off-chip L3 TLBs that can potentially eliminate
all page walks. While accessing the off-chip L3 TLB still incurs
one overhead memory access, it is much faster than the up to five
overhead memory accesses under a page walk.

Yet another use case is to improve hardware-based memoization.
Recent studies show that hardware-based memoization can provide
up to several times speedup. Hardware-based memoization can
either be fully transparent [75] or provide new instructions (e.g.,
memo_lookup andmemo_update [79]) to accelerate memoization
[28, 79]. Because memoization records past computation results, the
more space available, the more effective memoization can become.
Making microarchitecture free-memory aware can enable very
large and fast hardware-managed memoization tables to maximize
the effectiveness of hardware-based memoization.

7.2 Applicability to Other Systems
Making microarchitecture free-memory aware may also benefit
other systems such as cloud and PCs. Prior studies [20, 24, 42, 55, 73]
report cloud also experiences memory underutilization; as such,
FMTs can potentially also utilize the unused memory in cloud to
improve performance. We also note that existing systems’ physical
memory size may be limited by the fact that the return of adding
more memory can diminish quickly once there is already sufficient
physical memory to hold common-case workloads’ program mem-
ory and to cache frequently accessed files. By enabling CPUs to
extract more performance gains from additional memory, FMTs
may encourage cloud service providers to increase memory size per
node. For the same reason, PC users may be willing to buy more
memory to improve performance via FMTs.

8 RELATEDWORK
Servers support memory mirroring across two memory channels to
improve memory reliability [36]. Memory mirroring improves reli-
ability at the cost of performance; for example, Xeon E7 processors
are reported to suffer up to 50% slowdown under memory mirror-
ing [18]. Also, memory mirroring is only enabled or disabled at
boot-time [22], unlike FMR, which adjusts dynamically at runtime.

Existing OS on multi-socket systems replicate read-only kernel
text across different CPUs’ physical memory to hide the latency and
bandwidth overheads of accessing kernel text from remote memory
[14]. The free memory measured in our study already accounts
for all memory usages due to to existing OS optimization. Also
to reduce the overhead of remote memory accesses, a prior work
purely in the OS domain [29] replicates mostly-read (e.g., 95% read)
program memory pages across multiple sockets; this restriction is
because every write to a replicated page incurs an expensive soft
page fault. However, their evaluations show no benefit for NPB
due to only replicating mostly-read pages. In comparison, FMR
provides substantial benefits for NPB due to efficiently replicating
even write-heavy pages.

To mitigate the performance overhead due to refresh, many
recent prior works propose refreshing DRAM cells less frequently
[12, 45, 49, 64, 71]; however, reducing the refresh rate of DRAM
cells causes memory security and reliability problems [33, 38, 44, 46,

48] and is, therefore, undesirable for many important application
scenarios. Nonblocking Memory Refresh [62, 63], the state-of-art
prior work we compare against in Section 6, maintains JEDEC-
compliant DRAM refresh frequency.

For multi-level cell (MLC) technologies, such as MLC Flash and
MLC PCM, both existing products [30] and prior works [70] have
explored how to dynamically switch between the slower MLC and
the faster single-level cell (SLC) storage modes depending on the
current level of usage. Switching from MLC to SLC in hardware can
at most be viewed as allowing hardware to write a very restricted
constant value (i.e., 0) to unused locations. The proposed architec-
tural support, however, allows hardware to autonomously write
arbitrary values to free memory locations to enable many more
ways to boost microarchitecture performance.

9 CONCLUSION
In this work, we perform the first large-scale study of system-
level memory utilization in HPC systems. Through seven million
machine-hours of measurements across four in-production sys-
tems, we conclude that memory underutilization in HPC systems is
much more severe than in cloud. Correspondingly, we perform the
first exploration of architectural techniques to improve memory
utilization in HPC systems. We propose exposing each compute
node’s currently unused memory to its CPU(s) via novel architec-
tural support for OS. This can enable many new microarchitecture
techniques that use the abundant free memory to boost microarchi-
tecture performance transparently without requiring any user code
modification or recompilation; we refer to them as Free-memory-
aware Microarchitecture Techniques (FMTs). This paper presents a
detailed example of an FMT – Free-memory-aware Memory Repli-
cation (FMR). Our evaluation shows FMR improves performance
by 13% and system-level energy efficiency by 8%, on average across
five HPC benchmark suites.

10 ACKNOWLEDGEMENTS
We thank J. Thomas Pawlowski from MICRON for his insightful
feedback. We also thank Advanced Research Computing at Vir-
ginia Tech for providing computational resources and technical
support to generate results in the paper. We thank the reviewers
for providing helpful comments to improve the paper.

This work was supported in part by Office of Naval Research
(ONR) under grant N00014-16-1-2711 and National Science Founda-
tion (NSF) under grant 1850025. This manuscript has been approved
for unlimited release and has been assigned LA-UR-19-23170. This
work has been co-authored by an employee of Triad National Secu-
rity, LLC which operates Los Alamos National Laboratory under
Contract No. 89233218CNA000001 with the U.S. Department of
Energy/National Nuclear Security Administration. The publisher,
by accepting the article for publication, acknowledges that the
United States Government retains a non-exclusive, paid-up, irrev-
ocable, world-wide license to publish or reproduce the published
form of the manuscript, or allow others to do so, for United States
Government purposes.

REFERENCES
[1] [n. d.]. Graph500. https://graph500.org/.

MICRO-52, October 12–16, 2019, Columbus, OH, USA Panwar and Zhang and Pang, et al.

[2] [n. d.]. LANL CTS-1 Grizzly - Tundra Extreme Scale, Xeon E5-2695v4 18C 2.1GHz,
Intel Omni-Path. https://www.top500.org/system/178972.

[3] [n. d.]. LINPACK. http://www.netlib.org/linpack/.
[4] 2017. Advanced Configuration and Power Interface Specification Version 6.2.

https://uefi.org/sites/default/files/resources/ACPI_6_2.pdf.
[5] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop, A. Gentile, S.

Monk, N. Naksinehaboon, J. Ogden, M. Rajan, M. Showerman, J. Stevenson, N.
Taerat, and T. Tucker. 2014. Lightweight Distributed Metric Service: A Scalable
Infrastructure for Continuous Monitoring of Large Scale Computing Systems and
Applications. In Proc. IEEE/ACM International Conference for High Performance
Storage, Networking, and Analysis (SC14). IEEE/ACM.

[6] Jung Ho Ahn, Norman P. Jouppi, Christos Kozyrakis, Jacob Leverich, and Robert S.
Schreiber. 2012. Improving System Energy Efficiency with Memory Rank Sub-
setting. ACM Trans. Archit. Code Optim. 9, 1, Article 4 (March 2012), 28 pages.
https://doi.org/10.1145/2133382.2133386

[7] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,
V. Venkatakrishnan, and S. K. Weeratunga. 1991. The NAS Parallel Bench-
marks&Mdash;Summary and Preliminary Results. In Proceedings of the 1991
ACM/IEEE Conference on Supercomputing (Supercomputing ’91). ACM, New York,
NY, USA, 158–165. https://doi.org/10.1145/125826.125925

[8] Ishan Banerjee, Fei Guo, Kiran Tati, and Rajesh Venkatasubramanian. 2013. Mem-
ory Overcommitment in the ESX Server. VMWare Technical Journal (2013).
https://labs.vmware.com/vmtj/memory-overcommitment-in-the-esx-server.

[9] Luiz AndrÃľ Barroso and Urs HÃűlzle. 2009. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Synthesis Lectures on
Computer Architecture. Morgan&ClayPool Publishers.

[10] Luiz AndrÃľ Barroso, Urs HÃűlzle, and Parthasarathy Ranganathan. 2018. The
Datacenter as a Computer: Designing Warehouse-Scale Machines, Third Edition.
Synthesis Lectures on Computer Architecture. Morgan&ClayPool Publishers. https:
//doi.org/10.2200/S00874ED3V01Y201809CAC046

[11] Scott Beamer, Krste Asanovic, and David A. Patterson. 2015. The GAP Benchmark
Suite. CoRR abs/1508.03619 (2015). arXiv:1508.03619 http://arxiv.org/abs/1508.
03619

[12] I. Bhati, Z. Chishti, S. L. Lu, and B. Jacob. 2015. Flexible auto-refresh: Enabling
scalable and energy-efficient DRAM refresh reductions. In 2015 ACM/IEEE 42nd
Annual International Symposium on Computer Architecture (ISCA). 235–246. https:
//doi.org/10.1145/2749469.2750408

[13] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit.
News 39, 2 (Aug. 2011), 1–7. https://doi.org/10.1145/2024716.2024718

[14] John Blackwood. 2012. An Overview of Kernel Text Page Replication in RedHawk
Linux 6.3. https://www.concurrent-rt.com/wp-content/uploads/2016/11/kernel-
page-replication.pdf.

[15] Yuri Bubly. 2019. AMD Ryzen Memory Tweaking & Overclocking
Guide. https://www.techpowerup.com/review/amd-ryzen-memory-tweaking-
overclocking-guide/9.html.

[16] Karthik Chandrasekar, Christian Weis, Yonghui Li, Sven Goossens, Matthias
Jung, Omar Naji, Benny Akesson, Norbert Wehn, and Kees Goossens. [n. d.].
DRAMPower: Open-source DRAM Power & Energy Estimation Tool. URL:
http://www.drampower.info.

[17] K. K. Chang, D. Lee, Z. Chishti, A. R. Alameldeen, C. Wilkerson, Y. Kim, and O.
Mutlu. 2014. Improving DRAM performance by parallelizing refreshes with ac-
cesses. In 2014 IEEE 20th International Symposium on High Performance Computer
Architecture (HPCA). 356–367. https://doi.org/10.1109/HPCA.2014.6835946

[18] Sylvester Cash Charles Stephan, Alicia Boozer. 2016. Optimizing Mem-
ory Performance of Lenovo Servers Based on Intel Xeon E7 v3 Processors.
https://lenovopress.com/lp0048.pdf.

[19] N. Chatterjee, N. Muralimanohar, R. Balasubramonian, A. Davis, and N. P. Jouppi.
2012. Staged Reads: Mitigating the impact of DRAM writes on DRAM reads.
In IEEE International Symposium on High-Performance Comp Architecture. 1–12.
https://doi.org/10.1109/HPCA.2012.6168943

[20] W. Chen, K. Ye, Y. Wang, G. Xu, and C. Xu. 2018. How Does the Workload Look
Like in Production Cloud? Analysis and Clustering of Workloads on Alibaba Clus-
ter Trace. In 2018 IEEE 24th International Conference on Parallel and Distributed
Systems (ICPADS). 102–109. https://doi.org/10.1109/PADSW.2018.8644579

[21] Jonathan Corbet. 2010. Memory compaction. https://lwn.net/Articles/368869/.
[22] Neo Cui. 2017. Demonstrating the Memory RAS Features of Lenovo ThinkSystem

Servers. https://lenovopress.com/lp0778.pdf.
[23] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-efficient

and QoS-aware Cluster Management. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’14). ACM, New York, NY, USA, 127–144. https://doi.org/10.
1145/2541940.2541941

[24] S. Di, D. Kondo, and W. Cirne. 2012. Characterization and Comparison of Cloud
versus Grid Workloads. In 2012 IEEE International Conference on Cluster Comput-
ing. 230–238. https://doi.org/10.1109/CLUSTER.2012.35

[25] Jack Dongarra, Michael A Heroux, and Piotr Luszczek. 2016. High-performance
Conjugate-gradient Benchmark. Int. J. High Perform. Comput. Appl. 30, 1 (Feb.
2016), 3–10. https://doi.org/10.1177/1094342015593158

[26] L. Ecco and R. Ernst. 2017. Tackling the Bus Turnaround Overhead in Real-
Time SDRAM Controllers. IEEE Trans. Comput. 66, 11 (Nov 2017), 1961–1974.
https://doi.org/10.1109/TC.2017.2714672

[27] M. J. Feeley, W. E. Morgan, E. P. Pighin, A. R. Karlin, H. M. Levy, and C. A.
Thekkath. 1995. Implementing Global Memory Management in a Workstation
Cluster. In Proceedings of the Fifteenth ACM Symposium on Operating Systems
Principles (SOSP ’95). ACM, New York, NY, USA, 201–212. https://doi.org/10.
1145/224056.224072

[28] Adi Fuchs and David Wentzlaff. 2018. Scaling Datacenter Accelerators with
Compute-reuse Architectures. In Proceedings of the 45th Annual International
Symposium on Computer Architecture (ISCA ’18). IEEE Press, Piscataway, NJ, USA,
353–366. https://doi.org/10.1109/ISCA.2018.00038

[29] Fabien Gaud, Baptiste Lepers, Justin Funston, Mohammad Dashti, Alexandra
Fedorova, Vivien Quéma, Renaud Lachaize, and Mark Roth. 2015. Challenges of
Memory Management on Modern NUMA Systems. Commun. ACM 58, 12 (Nov.
2015), 59–66. https://doi.org/10.1145/2814328

[30] Dave Glen. 2014. Optimized Client Computing With Dynamic Write Accel-
eration. https://www.micron.com//̃media/documents/products/technical-
marketing-brief/brief_ssd_dynamic_write_accel.pdf.

[31] Mel Gorman. 2010. Memory Compaction v1. https://lwn.net/Articles/368854/.
[32] M. Gottscho, S. Govindan, B. Sharma, M. Shoaib, and P. Gupta. 2016. X-Mem: A

cross-platform and extensible memory characterization tool for the cloud. In 2016
IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS). 263–273. https://doi.org/10.1109/ISPASS.2016.7482101

[33] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. 2016. Rowhammer.Js: A
Remote Software-Induced Fault Attack in JavaScript. In Proceedings of the 13th
International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment - Volume 9721 (DIMVA 2016). Springer-Verlag New York, Inc., New
York, NY, USA, 300–321. https://doi.org/10.1007/978-3-319-40667-1_15

[34] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, and Kang G.
Shin. 2017. Efficient Memory Disaggregation with Infiniswap. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17). USENIX
Association, Boston, MA, 649–667. https://www.usenix.org/conference/nsdi17/
technical-sessions/presentation/gu

[35] HP. [n. d.]. CACTI. https://www.hpl.hp.com/research/cacti/.
[36] Intel. [n. d.]. Intel Xeon Processor E7 Family: Reliability, Availability, and Service-

ability: Advanced data integrity and resiliency support for mission-critical de-
ployments. https://www.intel.com/content/dam/www/public/us/en/documents/
white-papers/xeon-e7-family-ras-server-paper.pdf.

[37] Intel. 2017. 5-Level Paging and 5-Level EPT.
https://software.intel.com/sites/default/files/managed/2b/80/5-
level_paging_white_paper.pdf.

[38] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. 2017. SGX-Bomb:
Locking Down the Processor via Rowhammer Attack. Proceedings of the 2nd
Workshop on System Software for Trusted Execution (SysTEX) (October 2017).

[39] JEDEC. 2009. DDR2 SDRAM SPECIFICATION.
https://www.jedec.org/system/files/docs/JESD79-2F.pdf.

[40] JEDEC. 2012. DDR3 SDRAM SPECIFICATION.
https://www.jedec.org/sites/default/files/docs/JESD79-3F.pdf.

[41] JEDEC. 2017. JEDEC STANDARD DDR4 SDRAM JESD79-4B.
https://www.jedec.org/standards-documents/docs/jesd79-4a.

[42] C. Jiang, G. Han, J. Lin, G. Jia, W. Shi, and J. Wan. 2019. Characteristics of Co-
Allocated Online Services and Batch Jobs in Internet Data Centers: A Case Study
From Alibaba Cloud. IEEE Access 7 (2019), 22495–22508. https://doi.org/10.1109/
ACCESS.2019.2897898

[43] Vincent J. Zimmer Jiewen Yao. 2015. A Tour be-
yond BIOS Memory Map Design in UEFI BIOS.
https://firmware.intel.com/sites/default/files/resources/A_Tour_Beyond_BIOS
_Memory_Map_in%20UEFI_BIOS.pdf.

[44] Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa R. Alameldeen, Chris Wilkerson,
and Onur Mutlu. 2014. The Efficacy of Error Mitigation Techniques for DRAM
Retention Failures: A Comparative Experimental Study. SIGMETRICS Perform.
Eval. Rev. 42, 1 (June 2014), 519–532. https://doi.org/10.1145/2637364.2592000

[45] Samira Khan, Chris Wilkerson, Zhe Wang, Alaa R. Alameldeen, Donghyuk Lee,
and Onur Mutlu. 2017. Detecting and Mitigating Data-dependent DRAM Fail-
ures by Exploiting Current Memory Content. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-50 ’17). ACM,
New York, NY, USA, 27–40. https://doi.org/10.1145/3123939.3123945

[46] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and O.
Mutlu. 2014. Flipping bits in memory without accessing them: An experimental

https://www.top500.org/system/178972
https://uefi.org/sites/default/files/resources/ACPI_6_2.pdf
https://doi.org/10.1145/2133382.2133386
https://doi.org/10.1145/125826.125925
https://doi.org/10.2200/S00874ED3V01Y201809CAC046
https://doi.org/10.2200/S00874ED3V01Y201809CAC046
http://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1508.03619
https://doi.org/10.1145/2749469.2750408
https://doi.org/10.1145/2749469.2750408
https://doi.org/10.1145/2024716.2024718
https://www.concurrent-rt.com/wp-content/uploads/2016/11/kernel-page-replication.pdf
https://www.concurrent-rt.com/wp-content/uploads/2016/11/kernel-page-replication.pdf
https://doi.org/10.1109/HPCA.2014.6835946
https://doi.org/10.1109/HPCA.2012.6168943
https://doi.org/10.1109/PADSW.2018.8644579
https://lwn.net/Articles/368869/
https://lenovopress.com/lp0778.pdf
https://doi.org/10.1145/2541940.2541941
https://doi.org/10.1145/2541940.2541941
https://doi.org/10.1109/CLUSTER.2012.35
https://doi.org/10.1177/1094342015593158
https://doi.org/10.1109/TC.2017.2714672
https://doi.org/10.1145/224056.224072
https://doi.org/10.1145/224056.224072
https://doi.org/10.1109/ISCA.2018.00038
https://doi.org/10.1145/2814328
https://lwn.net/Articles/368854/
https://doi.org/10.1109/ISPASS.2016.7482101
https://doi.org/10.1007/978-3-319-40667-1_15
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/xeon-e7-family-ras-server-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/xeon-e7-family-ras-server-paper.pdf
https://doi.org/10.1109/ACCESS.2019.2897898
https://doi.org/10.1109/ACCESS.2019.2897898
https://doi.org/10.1145/2637364.2592000
https://doi.org/10.1145/3123939.3123945

Quantifying Memory Underutilization in HPC Systems and Using it to Improve Performance via Architecture Support MICRO-52, October 12–16, 2019, Columbus, OH, USA

study of DRAM disturbance errors. In 2014 ACM/IEEE 41st International Sympo-
sium on Computer Architecture (ISCA). 361–372. https://doi.org/10.1109/ISCA.
2014.6853210

[47] Yoongu Kim, Weikun Yang, and Onur Mutlu. 2016. Ramulator: A Fast and
Extensible DRAM Simulator. IEEE Comput. Archit. Lett. 15, 1 (Jan. 2016), 45–49.
https://doi.org/10.1109/LCA.2015.2414456

[48] Mark Lanteigne. 2016. How Rowhammer Could Be Used to Exploit Weaknesses
in Computer Hardware. (march 2016). http://www.thirdio.com/rowhammer.

[49] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang, and O. Mutlu. 2015.
Adaptive-latency DRAM: Optimizing DRAM timing for the common-case. In 2015
IEEE 21st International Symposium on High Performance Computer Architecture
(HPCA). 489–501. https://doi.org/10.1109/HPCA.2015.7056057

[50] H. Li and L. Wolters. 2007. Towards A Better Understanding of Workload Dy-
namics on Data-Intensive Clusters and Grids. In 2007 IEEE International Parallel
and Distributed Processing Symposium. 1–10. https://doi.org/10.1109/IPDPS.2007.
370250

[51] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen,
and Norman P. Jouppi. 2009. McPAT: An Integrated Power, Area, and Timing
Modeling Framework forMulticore andManycore Architectures. In Proceedings of
the 42Nd Annual IEEE/ACM International Symposium onMicroarchitecture (MICRO
42). ACM, New York, NY, USA, 469–480. https://doi.org/10.1145/1669112.1669172

[52] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan, Steven K.
Reinhardt, and Thomas F. Wenisch. 2009. Disaggregated Memory for Expansion
and Sharing in Blade Servers. In Proceedings of the 36th Annual International
Symposium on Computer Architecture (ISCA ’09). ACM, New York, NY, USA,
267–278. https://doi.org/10.1145/1555754.1555789

[53] K. Lim, Y. Turner, J. R. Santos, A. AuYoung, J. Chang, P. Ranganathan, and
T. F. Wenisch. 2012. System-level implications of disaggregated memory. In
IEEE International Symposium on High-Performance Comp Architecture. 1–12.
https://doi.org/10.1109/HPCA.2012.6168955

[54] Ben Lin, Michael Healy, Rustam Miftakhutdinov, Phil Emma, and Yale Patt. 2018.
Mitigating Off-Chip Memory Bank and Bank Group Conflicts via Data Dupli-
cation. In Proceedings of the 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO ’18).

[55] C. Lu, K. Ye, G. Xu, C. Xu, and T. Bai. 2017. Imbalance in the cloud: An analysis
on Alibaba cluster trace. In 2017 IEEE International Conference on Big Data (Big
Data). 2884–2892. https://doi.org/10.1109/BigData.2017.8258257

[56] Abdelhafid Mazouz, Alexandre Laurent, Benoît Pradelle, and William Jalby. 2014.
Evaluation of CPU frequency transition latency. Computer Science - Research and
Development 29, 3 (01 Aug 2014), 187–195. https://doi.org/10.1007/s00450-013-
0240-x

[57] MICRON. 2015. DDR4 SDRAM LRDIMM MTA72ASS4G72LZ -
32GB. https://www.micron.com/-/media/documents/products/data-
sheet/modules/lrdimm/ddr4/ass72c4gx72lz.pdf.

[58] MICRON. 2017. 8Gb: x4, x8, x16 DDR4 SDRAM. https://classes.engineering.
wustl.edu/permanant/cse260m/images/0/0c/8Gb_DDR4_SDRAM.pdf.

[59] MICRON. 2017. DDR4 SDRAM UDIMM MTA18ASF2G72AZ -
16GB. https://www.micron.com/-/media/documents/products/data-
sheet/modules/unbuffered_dimm/ddr4/asf18c2gx72az.pdf.

[60] MICRON. 2019. DDR4 SDRAM RDIMM: MTA144ASQ16G72PSZ - 128GB.
https://www.micron.com/-/media/client/global/documents/products/data-
sheet/modules/lrdimm/ddr4/asq144c16gx72psz.pdf.

[61] MICRON. 2019. DDR4 SDRAM RDIMM: MTA36ASF4G72PZ -
32GB. https://www.micron.com/-/media/documents/products/data-
sheet/modules/rdimm/ddr4/asf36c4gx72pz.pdf.

[62] K. Nguyen, K. Lyu, X. Meng, V. Sridharan, and X. Jian. 2018. NonblockingMemory
Refresh. In 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). 588–599. https://doi.org/10.1109/ISCA.2018.00055

[63] K. Nguyen, K. Lyu, X. Meng, V. Sridharan, and X. Jian. 2019. Nonblocking DRAM
Refresh. IEEE Micro 39, 3 (May 2019), 103–109. https://doi.org/10.1109/MM.2019.
2907486

[64] Minesh Patel, Jeremie S. Kim, and Onur Mutlu. 2017. The Reach Profiler
(REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at
Aggressive Conditions. In Proceedings of the 44th Annual International Sympo-
sium on Computer Architecture (ISCA ’17). ACM, New York, NY, USA, 255–268.
https://doi.org/10.1145/3079856.3080242

[65] J. Thomas Pawlowski. 2018. In-person Interview.
[66] J. Thomas Pawlowski. 2019. Email Interview.
[67] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sherwood, and

Brad Calder. 2003. Using SimPoint for Accurate and Efficient Simulation. In Pro-
ceedings of the 2003 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS ’03). ACM, New York, NY, USA,
318–319. https://doi.org/10.1145/781027.781076

[68] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan
Mangard. 2016. DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks.
In 25th USENIX Security Symposium (USENIX Security 16). USENIX Association,
Austin, TX, 565–581. https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/pessl

[69] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan
Mangard. 2016. DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks.
In 25th USENIX Security Symposium (USENIX Security 16). USENIX Association,
Austin, TX, 565–581. https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/pessl

[70] Moinuddin K. Qureshi, Michele M. Franceschini, Luis A. Lastras-Montaño, and
John P. Karidis. 2010. Morphable Memory System: A Robust Architecture for
Exploiting Multi-level Phase Change Memories. SIGARCH Comput. Archit. News
38, 3 (June 2010), 153–162. https://doi.org/10.1145/1816038.1815981

[71] M. K. Qureshi, D. H. Kim, S. Khan, P. J. Nair, and O. Mutlu. 2015. AVATAR: A
Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems. In 2015 45th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks.
427–437. https://doi.org/10.1109/DSN.2015.58

[72] redhat. 2019. CACHE LIMITATIONS WITH NFS. https://access.redhat.
com/documentation/en-us/red_hat_enterprise_linux/6/html/storage_
administration_guide/fscachelimitnfs.

[73] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, RandyH. Katz, andMichael A.
Kozuch. 2012. Heterogeneity and Dynamicity of Clouds at Scale: Google Trace
Analysis. In Proceedings of the Third ACM Symposium on Cloud Computing (SoCC
’12). ACM, New York, NY, USA, Article 7, 13 pages. https://doi.org/10.1145/
2391229.2391236

[74] Jeffrey Stuecheli, Dimitris Kaseridis, David Daly, Hillery C. Hunter, and Lizy K.
John. 2010. The Virtual Write Queue: Coordinating DRAM and Last-level Cache
Policies. SIGARCH Comput. Archit. News 38, 3 (June 2010), 72–82. https://doi.
org/10.1145/1816038.1815972

[75] G. Tziantzioulis, N. Hardavellas, and S. Campanoni. 2018. Temporal Approximate
Function Memoization. IEEE Micro 38, 4 (Jul 2018), 60–70. https://doi.org/10.
1109/MM.2018.043191126

[76] Jingjing Wang and Magdalena Balazinska. 2017. Elastic Memory Management
for Cloud Data Analytics. In Proceedings of the 2017 USENIX Conference on Usenix
Annual Technical Conference (USENIX ATC ’17). USENIX Association, Berkeley,
CA, USA, 745–758. http://dl.acm.org/citation.cfm?id=3154690.3154760

[77] T. F.Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, and A.Moshovos. 2010. Making
Address-Correlated Prefetching Practical. IEEE Micro 30, 1 (Jan 2010), 50–59.
https://doi.org/10.1109/MM.2010.21

[78] Wikichip. [n. d.]. Skylake (server) - Microarchitectures - Intel.
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server).

[79] Guowei Zhang and Daniel Sanchez. 2018. Leveraging Hardware Caches for
Memoization. IEEE Comput. Archit. Lett. 17, 1 (Jan. 2018), 59–63. https://doi.org/
10.1109/LCA.2017.2762308

[80] Darko Zivanovic, Milan Pavlovic, Milan Radulovic, Hyunsung Shin, Jongpil
Son, Sally A. Mckee, Paul M. Carpenter, Petar Radojković, and Eduard Ayguadé.
2017. Main Memory in HPC: Do We Need More or Could We Live with Less?
ACM Trans. Archit. Code Optim. 14, 1, Article 3 (March 2017), 26 pages. https:
//doi.org/10.1145/3023362

https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1109/HPCA.2015.7056057
https://doi.org/10.1109/IPDPS.2007.370250
https://doi.org/10.1109/IPDPS.2007.370250
https://doi.org/10.1145/1669112.1669172
https://doi.org/10.1145/1555754.1555789
https://doi.org/10.1109/HPCA.2012.6168955
https://doi.org/10.1109/BigData.2017.8258257
https://doi.org/10.1007/s00450-013-0240-x
https://doi.org/10.1007/s00450-013-0240-x
https://classes.engineering.wustl.edu/permanant/cse260m/images/0/0c/8Gb_DDR4_SDRAM.pdf
https://classes.engineering.wustl.edu/permanant/cse260m/images/0/0c/8Gb_DDR4_SDRAM.pdf
https://www.micron.com/-/media/client/global/documents/products/data-sheet/modules/lrdimm/ddr4/asq144c16gx72psz.pdf
https://www.micron.com/-/media/client/global/documents/products/data-sheet/modules/lrdimm/ddr4/asq144c16gx72psz.pdf
https://www.micron.com/-/media/documents/products/data-sheet/modules/rdimm/ddr4/asf36c4gx72pz.pdf
https://www.micron.com/-/media/documents/products/data-sheet/modules/rdimm/ddr4/asf36c4gx72pz.pdf
https://doi.org/10.1109/ISCA.2018.00055
https://doi.org/10.1109/MM.2019.2907486
https://doi.org/10.1109/MM.2019.2907486
https://doi.org/10.1145/3079856.3080242
https://doi.org/10.1145/781027.781076
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/pessl
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/pessl
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/pessl
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/pessl
https://doi.org/10.1145/1816038.1815981
https://doi.org/10.1109/DSN.2015.58
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/storage_administration_guide/fscachelimitnfs
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/storage_administration_guide/fscachelimitnfs
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/storage_administration_guide/fscachelimitnfs
https://doi.org/10.1145/2391229.2391236
https://doi.org/10.1145/2391229.2391236
https://doi.org/10.1145/1816038.1815972
https://doi.org/10.1145/1816038.1815972
https://doi.org/10.1109/MM.2018.043191126
https://doi.org/10.1109/MM.2018.043191126
http://dl.acm.org/citation.cfm?id=3154690.3154760
https://doi.org/10.1109/MM.2010.21
https://doi.org/10.1109/LCA.2017.2762308
https://doi.org/10.1109/LCA.2017.2762308
https://doi.org/10.1145/3023362
https://doi.org/10.1145/3023362

	Abstract
	1 Introduction
	2 Quantifying Memory Under- utilization in HPC Systems
	3 Architectural Support for OS to Expose Free Memory to CPU
	3.1 Architectural Support
	3.2 How OS Uses the Architectural Support
	3.3 Discussion

	4 Free-memory-aware Microarchitecture
	4.1 Background: State-dependent Latencies
	4.2 Reading from Memory Under FMR
	4.3 Writing to Memory Under FMR
	4.4 Memory Layout Details
	4.5 Discussion on Memory Bus Signal Integrity

	5 Methodology
	6 Results
	6.1 Memory Behavior Analysis
	6.2 Sensitivity Analysis
	6.3 Real-system Emulation

	7 Generality
	7.1 Other Potential FMTs
	7.2 Applicability to Other Systems

	8 Related Work
	9 Conclusion
	10 Acknowledgements
	References

